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POINTS OF A FINITE FAMILY OF STRICTLY
PSEUDOCONTRACTIVE MAPPINGS IN BANACH SPACES

NGUYEN BUONG

ABSTRACT. The aim of this paper is to present an explicit iteration method
for finding a common fixed point of a finite family of strictly pseudocon-
tractive mappings defined on g-uniformly smooth and uniformly convex
Banach spaces.
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1. Introduction

Let ¢ > 1, X be a g-uniformly smooth Banach space which is also uniformly
convex and its dual space X™ be strictly convex. For the sake of simplicity, the
norms of X and X* are denoted by the symbol ||.||. We write (z,z*) instead
of z*(z) for * € X* and ¢ € X. Let {T;}}¥, be a family of strictly
pseudocontractive mappings in X with the domain of definition D(7T;) = X.

Consider the following problem: find an element

T, €8 :=nN,F(Ty), (1.1)
where F(T;) denotes the set of fixed points of the mapping 7; in X. In this
paper we assume that S # 0.

Recall that a mapping 7; in X is called strictly pseudocontractive in the

terminology of Browder and Petryshyn [2] if for all z,y € D(T;), there exists
A; > 0 such that

(Ti(z) = Ti(y), j(& —y)) < e —yl> = Nllz —y — (T(@) =TW)I*  (1.2)
where j(z) denotes the normalized duality mapping of the space X. If I denotes
the identity operator in X, then (1.2) can be written in the form

(I -T) (@) — (I =T)(), iz —y)) = Ml = Ti)(2) — (I =T)(WI”.  (1.3)
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In Hilbert space H, (1.2) (and hence (1.3)) is equivalent to the inequality
ITi(z) = T)I? < llz = yll* + kil (I = T)(z) — (I = T) @I ki = 1~ As.
Clearly, when k; = 0, T; is nonexpansive, i.e.,
ITi(2) — Ta(y)ll < llz —y].
In [11] Wang proved the following result.

Theorem 1.1. Let H be a Hilbert space, T : H — H a nonexpansive mapping
with F(T) # 0, and F : H — H an n-strongly monotone and k-Lipschitzian
mapping. For any o € H, {x,} is defined by

Tnt1 = nTn + (1 — )Tz, n > 0,

where {o,} and {\,} C [0,1) satisfy the following conditions:
(1) a < an < B for some a, 5 € (0,1);
@) 5= < +oo:
(3) 0 < p < 2n/k2.
Then,
(1) {zn} converges weakly to a fized point of T';
(2) {zn} converges strongly to a fired point of T if and only if

lim inf d(z,, F(T))=0.

Another methods are considered in (6] and [7] for the case N = 1.
In [14] Zeng and Yao proved the following results.

Theorem 1.2. Let H be a Hilbert space, F : H — H be a mapping such that
for some constants k,n > 0, F is k-Lipschitzian and 7n-strongly monotone. Let
{T}L, be N nonexpansive self-maps of H such that C = NN, F(T;) # 0. Let
p € (0,2n/k?), let zo € H,{ A}, C [0,1) and {an}S, C (0,1) satisfying the
conditions: Y oo | Ap < 00 and a < a, < B,n > 1, for some o, 3 € (0,1). Then
the sequence {z,} defined by

Ln =C0np_1Tpn-1+ (1 - an)T,i‘".'L‘n

1.4
=0p—1Tp—1+ (1 - an)[Tnxn - )\n,UfF(Tnxn)]a n=> 17 ( )

where T, = Tmoan, converges weakly to a common fized point of the mappings
{Ti}HL,.

Theorem 1.3. Let H be a Hilbert space, F : H — H be a mapping such that
for some constants k,n > 0, F is k-Lipschitzian and n-strongly monotone. Let
{T;}X.| be N nonezpansive self-maps of H such that C = NN, F(T,) # 0. Let
p € (0,2n/k?), let zo € H, {M}321 C[0,1) and {a,}3; C (0,1) satisfying the
conditions: 3 27 1 Ay < 00 and o < oy < B,n > 1, for some o, 8 € (0,1). Then
the sequence {x,} defined by (1.4) converges strongly to a common fized point
of the mappings {T;}N_, if and only if

lim inf_d(en, N F(T;)) = 0.
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In [ 9, 12], Xu, Ori, and Osilike showed that if X is a Hilbert space, and the
sequence {z,} defined by

Tp = Qpln_1+ (1 - avz)Tn<$71): To € C,

then {z,} converges weakly to a common fixed point of {T;}}L,. In [4] Chen,
Lin, and Song extended the above result to a Banach spaces.

Theorem 1.4. Let K be a nonempty closed conver subset of a q-uniformly
smooth and p-uniformly convex Banach space E that has the Opial property. Let
s be any element in (0,1) and let {T;}}, be a finite family of strictly pseudocon-
tractive self-maps of K such that T;,1 < i < N have at least one common fized
point. For any point zg in K and any sequence {an}5%,, in (0, 8), the sequence

Tp = Gp—-1Tp—1+ (1 - an}TnIny
converges weakly to a common fized point of the mappings {T;}.,.

Further, Gu in [5] introduced a new composite implicit iteration process as
follows:

In = (1 — Qp — 7n)$n—~1 + a’nrf;z(yn) + Ynln,n 2 1,
Yn = (1 - ,/3n - 571)1'7; + ﬂnTn (xn) + 3y, n > 1,
where {an}, {Bn}, {1}, {0n} are four real sequences in [0, 1] satisfying o +v, <

land 8,4+, <1lforalln > 1, {u,} and {v,} are two bounded sequences in C
and zg is a given point. It is proved the following theorem.

(1.5)

Theorem 1.5. Let X be a real Banach space and C be a nonempty closed conves
subset of X. Let {T;}Y, be N strictly pseudocontractive mappings of C' into C
with S == NX F(T;) # 0. Let {an}, {Bn}, {7}, {00} are four real sequences in
[0, 1] satisfying cn, + vy < 1 and B + 8, < 1 for all n > 1, {un} and {v,} are
twe bounded sequences in C satisfying the following conditions:

(i) S22, o = oo

(1) Yoo, @ < oo;

(#83) S0 anfn < 00;

(i) Yoo, andn < 003

(v) Zzoi1 Y < 003
Suppose further that and Ty € C be a given point and {z,} is the implicit
iteration sequence defined by (1.5), then the following conclusions hold:

(2) limy—oo ||Zn — p| exists for all p € S,

(#7) Hminf, . |z, — Tn(z,)|l = 0.

Set
Ay =1~T;.

Obviously, S; := {z € X : Ai(z) = 0} = F(T;) and problem (1.1) is equivalent
to one of finding a common solution of the following operator equations

AZ(I)ZO, 7 == l,...,jV,



718 Nguyen Buong

where A; are Lipschitz continuous and )\; inverse strongly accretive, i.e., A;
satisfy (1.3).

In the following section, on the base of [3] and the implicit iterative method
of the Tikhonov regularization type we present an explicit iterative method for
solving (1.1) in Banach spaces. Later, the symbols — and — denote the strong
and the weak convergence, respectively.

1. Main results

We formulate the following facts in [8], [13] which are necessary in the proof
of our results.

Lemma 2.1. Let {an},{bn}, {cn} be the sequences of positive numbers satisfying
the conditions

(1) ant1 < (1= by)an + cn, by < 1,

(i) Yonrobn =00, limp 40§t =

Then, lim, 4 a, = 0.

Theorem 2.1. [13] Let ¢ > 1 and X be a real Banach space. Then the following
are equivalent:

(1) X is g-uniformly smooth.

(2) There exists a constant cq > 0 such that for all z,y € X

lz +yll? < ll=l|? + gy, jo(2)) + cqllyll?,
where

Jo@) ={f € X* :(x, f) = ||z|* and |fll = lll|""}.

Note that j, is called the generalized duality mapping from X into 2X" for
arbitrary Banach space X. When q = 2, j5 is called the normalized duality
mapping and it is usually denoted by j. It is well known [13] that jy(z) =
llz||2=24(z) if z # 0, and that if X* is strictly convex then j, is single-valued.
One important property of j used later is j(—z) = —j{z). The modulus of
smoothness of X is the function px : [0, 00) — [0, 00) defined by

px(0) =sup{ 3+ ol + o = ol) ~ 1 el < 1.l < 7.

X is uniformly smooth if and only if lim,_o(px(7)/7) = 0. X is said to be g-
unifomly smooth if there exists a constant ¢ > 0 such that px(7) < cr9. Hilbert
spaces, Ly, (or lp) spaces, 1 < p < 0o, and the Sobolev spaces, WF,,1 < p < oo,
are g-uniformly smooth. Hilbert spaces are 2-uniformly smooth while

— uniforml], thif 1<p<2
Ly(or l,) orWP is P un% Oy Soo 1 p=
2 — uniformly smooth if p > 2.
T is said to be demiclosed at a point p if whenever {z,} is a sequence in D(T)
such that {x,} converges weakly to x € D(T) and {T(x,)} converges strongly
to p, then T(xz) = p. Furthermore, T is said to be demicompact if whenever
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{xn} is a bounded sequence in D(T) such that {z, —T(z,)} converges strongly,
then {z,} has a subsequence which converges strongly.

Theorem 2.2. [8] Let X be a g-uniformly smooth Banach space which is also
uniformly convez. Let K be a nonempty closed convex subset of X and T : K —
K a strictly pseudocontractive map. Then (I —T) is demiclosed at zero.

Consider the operator version of Tikhonov regularization method in the form

> Ai(z) + onz =0, (2.1)

depending on the positive regularization parameter «,, that tens to zero as n —
+oc.
We have the following resulits.

Theorem 2.3. (i) For each o, > 0, problem (2.1) has a unique solution .
(ii) If one of the following conditions is satisfied:

(a) X possesses a weak sequential continuous duality mapping j,

(b) there exists a number iy € {1,2,..., N} such that T;, is demicompact,
then the sequence {x,} possesses a convergent subsequence, and each convergent
subsequence of {x,} converges to a solution of (1.1).

(iii) If the sequence {ay} is chosen such that

lim 120Gl

n—+oo (e 7% ’

for any fixed positive natural number p, then

lim z,=z.€8.
n—+oo

Proof. (i) Since Zf;l A; are Lipschitz continuous and accretive, then it is m-
accretive [1]. Hence, equation (2.1) has a unique solution denoted by x,, for each
o, > 0.

(ii) From (2.1) it follows
N
Z(Az(xn)a](xn - y)) + an<xn7j(mn - y>> =0 Vy €S. (22)

=1

Since A;(y) =0,i=1,..., N, then

The last equality, (2.2) and the accretive property of A; give

or
(@n =y, §(@n —y)) < (—y,j(zn —y)) YyeS (2.3)
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Consequently,
lzn —oll < llgl and [lzall <2fyl,y €S (2.4)

Hence, {z,} is bounded. Let z,,, — & € X, as k — +o0o. We shall prove that
Z € F(T;),l =1,...,N. For any y € S from (1.3), (2.1), (2.4) and the accretive
property of A; it implies that

lA(zn)I? < (Ai(@n,), 3 (@ne = 9))/ N

N
< Z (Az(y) - Ai(xnk)’j(x"k - y))/)‘l

i=1,il
+ ank<_y,j(xnk - y))/)‘l
or

ien)l < /52 il

Therefore,
lim ||A;(zn, )| =0.
k—oo

By virtue of the demiclosed property of A;, we have A;(Z) =0, i.e., Z € F(T;).
It means that £ € S.

From the weak sequential continuous property of the duality mapping j and
(2.3) with y = Z or the demicompact property of T;, it follows that z,, — & € S,
as k — oc.

(iii) Let zn4p be the solution of (2.1) when a, is replaced by opqp. Then,

N
Z(Ai(xn) — Ai(Zn4p)J(Tn — Tnip)) + On(@n, (Tn — Tnip))
=1
+ ntp{Tntp, J(Znsp — Tn)) =0.
Hence,
lotn — ot
20 — Tnapll < ———L2|y].
n
Clearly, if
lim 19 = ntnl _ g
n—+0o (679

then {z,} is a Cauchy sequence in the Banach space X. Therefore,

lim z,=z.€S.
n—-+4o0

Theorem is proved now. O

Now, consider the iterative regularization method of zero order

N
Znt1 = 20 — BulD_ Ai(2n) + 0nzn], 20 € X,n = 0,1, ... (2.5)

i=1
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Set
1
L= max{y,i =1,...,N}

T

Theorem 2.4. Suppose that 3., o, satisfy the following conditions:

. Qp — Q&
0 < Bn < fo,an \,0, lim —"——2E — 0,
nooo  aZf,

(LN + ap)?

Gn

oo

FE —1
E anBn =00, limp_o €0 < 1.
n=0

Then limy, .o 2n = T« € S, where 2, is defined by (2.5).
Proof. Let z,, be the solution of (2.1). Then, theorem 2.1 gives

N
“Zn-i-l - xn”q = ”Zn —Tn — ﬁn[Z(Az(zn) - Az(xn)) + Oén(Zn - In)]“q
=1
< lzn — anq
N
— 8D _(Ai(zn) — Ai(@n) + @nl2n — Tn), Jo(zn — 20))
i=1
N

+ B2l Z(Ai(m — Ai(20)) + an(zn — 2|},

where
(Ai(zn) — Ai(zn), Jo(2n — Tn)) = |l2n — xnllq_2 x
(Ai(zn) — Ai(zn), j(2n — 20n)) 20,
(2n = Tn, Jg(2n — Tn)) = |20 — 2al|%.
Therefore,
[2n41 = 2all? < |20 — 2nll?[1 = gBnarn + cgBL(LN + an)].
Thus,

J2ns1 = Tl < llan ~ all[l = gBacen + B (LN + )7,
Since ¢ B3 (LN + an)? < Bha, and (1 — )Y <1 —~t, for 0 < < 1, then
2041 = 2all < llzn = 2all[1 ~ (g = Dnaa] 7
<z — 21— L2 ).
Hence,

lzn+1 — Tna |l < lzngr — Tpll + [|Tns1 — znll

-1 Qp — Qpal
< Nlzm — 2| (1 — Qq—gnan) 4+ pmdn et

n

721
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Applying lemma 2.1 with
g—1
Ap = “Zn - In”, b, = q Bnan
Man — Qp41
Qn
we obtain that lim, . ||2n — Z»|| = 0. On the other hand, since

Cp =

. oy — R e
lim —=——"*1 — 0, then lim ———"*' = .

n—oo a%ﬁn n—o0 (079

Consequently, for any fixed positive natural number p we have

Tp— Tptl €
Ve >03N(s) > 0:Vn > N(g) = "+ < _,
Tn p
Thus,
0< On — Cnyp _ COn — Onyl + Qpt1 — Qpy2 Tt Qnip—1 — Anip
(079 (079 (679 G
ap —Q « —a Qpip_1— Q
< n n+1 + n+1 n+2 4o+ n+p n-+p <e.
Oy 077 | Ontp-1

It means that lim,,_, o Z2—""42 =  for any fixed positive natural number p.

Theorem 2.3 permits us to conclude that lim,, oo Tn = Zx € S. So,

lim 2z, =z € S.
n—ooC

Theorem is proved. O
Remark. The sequences a, = (1 +n)7?,0 <p < 1/2, and G, = Yoo, with
1
c;/(q_l)(LN + ag)9/la=D)
satisfy all the necessary conditions in theorem 2.4 for the case ¢ > 2. For the

case 1 < ¢ <2, a,=(1+n)"? withp < (¢—1)/(2¢) and 3, = yoor! ™ also
satisfy all the necessary conditions in theorem 2.4.

0<yw<
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