AN EXPLICIT ITERATION METHOD FOR COMMON FIXED POINTS OF A FINITE FAMILY OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS IN BANACH SPACES

NGUYEN BUONG

ABSTRACT. The aim of this paper is to present an explicit iteration method for finding a common fixed point of a finite family of strictly pseudocontractive mappings defined on q-uniformly smooth and uniformly convex Banach spaces.

AMS Mathematics Subject Classification: 47H17

Key words and phrases: Accretive operators, q-uniformly smooth, uniformly convex and strictly convex Banach space, and regularization.

1. Introduction

Let q > 1, X be a q-uniformly smooth Banach space which is also uniformly convex and its dual space X^* be strictly convex. For the sake of simplicity, the norms of X and X^* are denoted by the symbol $\|.\|$. We write $\langle x, x^* \rangle$ instead of $x^*(x)$ for $x^* \in X^*$ and $x \in X$. Let $\{T_i\}_{i=1}^N$ be a family of strictly pseudocontractive mappings in X with the domain of definition $D(T_i) = X$.

Consider the following problem: find an element

$$x_* \in S := \bigcap_{i=1}^N F(T_i),$$
 (1.1)

where $F(T_i)$ denotes the set of fixed points of the mapping T_i in X. In this paper we assume that $S \neq \emptyset$.

Recall that a mapping T_i in X is called strictly pseudocontractive in the terminology of Browder and Petryshyn [2] if for all $x, y \in D(T_i)$, there exists $\lambda_i > 0$ such that

$$\langle T_i(x) - T_i(y), j(x-y) \rangle \le ||x-y||^2 - \lambda_i ||x-y - (T(x) - T(y))||^2,$$
 (1.2)

where j(x) denotes the normalized duality mapping of the space X. If I denotes the identity operator in X, then (1.2) can be written in the form

$$\langle (I - T_i)(x) - (I - T_i)(y), j(x - y) \rangle \ge \lambda_i ||(I - T_i)(x) - (I - T_i)(y)||^2.$$
 (1.3)

Received November 17, 2007. Revised February 13, 2008. Accepted March 8, 2008.

^{© 2009} Korean SIGCAM and KSCAM.

In Hilbert space H, (1.2) (and hence (1.3)) is equivalent to the inequality

$$||T_i(x) - T_i(y)||^2 \le ||x - y||^2 + k_i ||(I - T_i)(x) - (I - T_i)(y)||^2, k_i = 1 - \lambda_i.$$

Clearly, when $k_i = 0$, T_i is nonexpansive, i.e.,

$$||T_i(x) - T_i(y)|| \le ||x - y||.$$

In [11] Wang proved the following result.

Theorem 1.1. Let H be a Hilbert space, $T: H \to H$ a nonexpansive mapping with $F(T) \neq \emptyset$, and $F: H \rightarrow H$ an η -strongly monotone and k-Lipschitzian mapping. For any $x_0 \in H$, $\{x_n\}$ is defined by

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T^{\lambda_{n+1}} x_n, n \ge 0,$$

where $\{\alpha_n\}$ and $\{\lambda_n\} \subset [0,1)$ satisfy the following conditions:

- (1) $\alpha \leq \alpha_n \leq \beta$ for some $\alpha, \beta \in (0, 1)$; (2) $\sum_{n=1}^{\infty} \lambda_n < +\infty$; (3) $0 < \mu < 2\eta/k^2$.

Then.

- (1) $\{x_n\}$ converges weakly to a fixed point of T;
- (2) $\{x_n\}$ converges strongly to a fixed point of T if and only if

$$\lim \inf_{n \to \infty} d(x_n, F(T)) = 0.$$

Another methods are considered in [6] and [7] for the case N=1. In [14] Zeng and Yao proved the following results.

Theorem 1.2. Let H be a Hilbert space, $F: H \to H$ be a mapping such that for some constants $k, \eta > 0$, F is k-Lipschitzian and η -strongly monotone. Let $\{T_i\}_{i=1}^N$ be N nonexpansive self-maps of H such that $C = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Let $\mu \in (0, 2\eta/k^2)$, let $x_0 \in H$, $\{\lambda_n\}_{n=1}^{\infty} \subset [0, 1)$ and $\{\alpha_n\}_{n=1}^{\infty} \subset (0, 1)$ satisfying the conditions: $\sum_{n=1}^{\infty} \lambda_n < \infty$ and $\alpha \leq \alpha_n \leq \beta, n \geq 1$, for some $\alpha, \beta \in (0, 1)$. Then the sequence $\{x_n\}$ defined by

$$x_n = \alpha_{n-1} x_{n-1} + (1 - \alpha_n) T_n^{\lambda_n} x_n$$

= $\alpha_{n-1} x_{n-1} + (1 - \alpha_n) [T_n x_n - \lambda_n \mu F(T_n x_n)], n \ge 1,$ (1.4)

where $T_n = T_{nmodN}$, converges weakly to a common fixed point of the mappings $\{T_i\}_{i=1}^N$.

Theorem 1.3. Let H be a Hilbert space, $F: H \to H$ be a mapping such that for some constants $k, \eta > 0$, F is k-Lipschitzian and η -strongly monotone. Let $\{T_i\}_{i=1}^N$ be N nonexpansive self-maps of H such that $C = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Let $\mu \in (0, 2\eta/k^2)$, let $x_0 \in H$, $\{\lambda_n\}_{n=1}^{\infty} \subset [0, 1)$ and $\{\alpha_n\}_{n=1}^{\infty} \subset (0, 1)$ satisfying the conditions: $\sum_{n=1}^{\infty} \lambda_n < \infty$ and $\alpha \leq \alpha_n \leq \beta, n \geq 1$, for some $\alpha, \beta \in (0,1)$. Then the sequence $\{x_n\}$ defined by (1.4) converges strongly to a common fixed point of the mappings $\{T_i\}_{i=1}^N$ if and only if

$$\lim\inf_{n\to\infty}d(x_n,\cap_{i=1}^N F(T_i))=0.$$

In [9, 12], Xu, Ori, and Osilike showed that if X is a Hilbert space, and the sequence $\{x_n\}$ defined by

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n(x_n), x_0 \in C,$$

then $\{x_n\}$ converges weakly to a common fixed point of $\{T_i\}_{i=1}^N$. In [4] Chen, Lin, and Song extended the above result to a Banach spaces.

Theorem 1.4. Let K be a nonempty closed convex subset of a q-uniformly smooth and p-uniformly convex Banach space E that has the Opial property. Let s be any element in (0,1) and let $\{T_i\}_{i=1}^N$ be a finite family of strictly pseudocontractive self-maps of K such that $T_i, 1 \leq i \leq N$ have at least one common fixed point. For any point x_0 in K and any sequence $\{\alpha_n\}_{n=0}^{\infty}$, in (0,s), the sequence

$$x_n = \alpha_{n-1}x_{n-1} + (1 - \alpha_n)T_nx_n,$$

converges weakly to a common fixed point of the mappings $\{T_i\}_{i=1}^N$.

Further, Gu in [5] introduced a new composite implicit iteration process as follows:

$$x_{n} = (1 - \alpha_{n} - \gamma_{n})x_{n-1} + \alpha_{n}T_{n}(y_{n}) + \gamma_{n}u_{n}, n \ge 1,$$

$$y_{n} = (1 - \beta_{n} - \delta_{n})x_{n} + \beta_{n}T_{n}(x_{n}) + \delta_{n}v_{n}, n \ge 1,$$
(1.5)

where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\}$ are four real sequences in [0,1] satisfying $\alpha_n + \gamma_n \leq$ 1 and $\beta_n + \delta_n \leq 1$ for all $n \geq 1$, $\{u_n\}$ and $\{v_n\}$ are two bounded sequences in C and x_0 is a given point. It is proved the following theorem.

Theorem 1.5. Let X be a real Banach space and C be a nonempty closed convex subset of X. Let $\{T_i\}_{i=1}^N$ be N strictly pseudocontractive mappings of C into C with $S := \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Let $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\}$ are four real sequences in [0,1] satisfying $\alpha_n + \gamma_n \leq 1$ and $\beta_n + \delta_n \leq 1$ for all $n \geq 1$, $\{u_n\}$ and $\{v_n\}$ are two bounded sequences in C satisfying the following conditions:

- (i) $\sum_{i=1}^{\infty} \alpha_n = \infty$; (ii) $\sum_{i=1}^{\infty} \alpha_n^2 < \infty$; (iii) $\sum_{i=1}^{\infty} \alpha_n \beta_n < \infty$; (iv) $\sum_{i=1}^{\infty} \alpha_n \delta_n < \infty$; (v) $\sum_{i=1}^{\infty} \gamma_n < \infty$;

Suppose further that and $x_0 \in C$ be a given point and $\{x_n\}$ is the implicit iteration sequence defined by (1.5), then the following conclusions hold:

- (i) $\lim_{n\to\infty} ||x_n p||$ exists for all $p \in S$;
- $(ii) \lim \inf_{n \to \infty} ||x_n T_n(x_n)|| = 0.$

Set

$$A_i = I - T_i$$
.

Obviously, $S_i := \{x \in X : A_i(x) = 0\} = F(T_i)$ and problem (1.1) is equivalent to one of finding a common solution of the following operator equations

$$A_i(x) = 0, \quad i = 1, ..., N,$$

where A_i are Lipschitz continuous and λ_i inverse strongly accretive, i.e., A_i satisfy (1.3).

In the following section, on the base of [3] and the implicit iterative method of the Tikhonov regularization type we present an explicit iterative method for solving (1.1) in Banach spaces. Later, the symbols \rightarrow and \rightarrow denote the strong and the weak convergence, respectively.

1. Main results

We formulate the following facts in [8], [13] which are necessary in the proof of our results.

Lemma 2.1. Let $\{a_n\}, \{b_n\}, \{c_n\}$ be the sequences of positive numbers satisfying the conditions

(i)
$$a_{n+1} \leq (1-b_n)a_n + c_n, b_n < 1,$$
(ii)
$$\sum_{n=0}^{\infty} b_n = +\infty, \quad \lim_{n \to +\infty} \frac{c_n}{b_n} = 0.$$
Then,
$$\lim_{n \to +\infty} a_n = 0.$$

Theorem 2.1. [13] Let q > 1 and X be a real Banach space. Then the following are equivalent:

- (1) X is q-uniformly smooth.
- (2) There exists a constant $c_q > 0$ such that for all $x, y \in X$

$$||x + y||^q \le ||x||^q + q\langle y, j_q(x)\rangle + c_q ||y||^q,$$

where

$$j_q(x) = \{ f \in X^* : \langle x, f \rangle = ||x||^q \text{ and } ||f|| = ||x||^{q-1} \}.$$

Note that j_q is called the generalized duality mapping from X into 2^{X^*} for arbitrary Banach space X. When q=2, j_2 is called the normalized duality mapping and it is usually denoted by j. It is well known [13] that $j_q(x)=\|x\|^{q-2}j(x)$ if $x\neq 0$, and that if X^* is strictly convex then j_q is single-valued. One important property of j used later is j(-x)=-j(x). The modulus of smoothness of X is the function $\rho_X:[0,\infty)\to[0,\infty)$ defined by

$$\rho_X(\tau) = \sup \left\{ \frac{1}{2} (\|x + y\| + \|x - y\|) - 1 : \|x\| \le 1, \|y\| \le \tau \right\}.$$

X is uniformly smooth if and only if $\lim_{\tau\to 0}(\rho_X(\tau)/\tau)=0$. X is said to be q-unifomly smooth if there exists a constant c>0 such that $\rho_X(\tau)\leq c\tau^q$. Hilbert spaces, L_p (or l_p) spaces, $1< p<\infty$, and the Sobolev spaces, W_m^p , $1< p<\infty$, are q-uniformly smooth. Hilbert spaces are 2-uniformly smooth while

$$L_p(\text{or } l_p) \text{ or } W_m^p \text{ is } \begin{cases} p - \text{uniformly smooth if } 1$$

T is said to be demiclosed at a point p if whenever $\{x_n\}$ is a sequence in D(T) such that $\{x_n\}$ converges weakly to $x \in D(T)$ and $\{T(x_n)\}$ converges strongly to p, then T(x) = p. Furthermore, T is said to be demicompact if whenever

 $\{x_n\}$ is a bounded sequence in D(T) such that $\{x_n - T(x_n)\}$ converges strongly, then $\{x_n\}$ has a subsequence which converges strongly.

Theorem 2.2. [8] Let X be a q-uniformly smooth Banach space which is also uniformly convex. Let K be a nonempty closed convex subset of X and $T: K \to K$ a strictly pseudocontractive map. Then (I-T) is demiclosed at zero.

Consider the operator version of Tikhonov regularization method in the form

$$\sum_{i=1}^{N} A_i(x) + \alpha_n x = 0, \tag{2.1}$$

depending on the positive regularization parameter α_n that tens to zero as $n \to +\infty$.

We have the following results.

Theorem 2.3. (i) For each $\alpha_n > 0$, problem (2.1) has a unique solution x_n . (ii) If one of the following conditions is satisfied:

- (a) X possesses a weak sequential continuous duality mapping j,
- (b) there exists a number $i_0 \in \{1, 2, ..., N\}$ such that T_{i_0} is demicompact, then the sequence $\{x_n\}$ possesses a convergent subsequence, and each convergent subsequence of $\{x_n\}$ converges to a solution of (1.1).
- (iii) If the sequence $\{\alpha_n\}$ is chosen such that

$$\lim_{n \to +\infty} \frac{|\alpha_n - \alpha_{n+p}|}{\alpha_n} = 0,$$

for any fixed positive natural number p, then

$$\lim_{n \to +\infty} x_n = x_* \in S.$$

Proof. (i) Since $\sum_{i=1}^{N} A_i$ are Lipschitz continuous and accretive, then it is m-accretive [1]. Hence, equation (2.1) has a unique solution denoted by x_n for each $\alpha_n > 0$.

(ii) From (2.1) it follows

$$\sum_{i=1}^{N} \langle A_i(x_n), j(x_n - y) \rangle + \alpha_n \langle x_n, j(x_n - y) \rangle = 0 \quad \forall y \in S.$$
 (2.2)

Since $A_i(y) = 0, i = 1, ..., N$, then

$$\sum_{i=1}^{N} A_i(y) = 0.$$

The last equality, (2.2) and the accretive property of A_i give

$$\langle x_n, j(x_n - y) \rangle \le 0$$

or

$$\langle x_n - y, j(x_n - y) \rangle \le \langle -y, j(x_n - y) \rangle \quad \forall y \in S.$$
 (2.3)

Consequently,

$$||x_n - y|| \le ||y||$$
 and $||x_n|| \le 2||y||, y \in S.$ (2.4)

Hence, $\{x_n\}$ is bounded. Let $x_{n_k} \rightharpoonup \tilde{x} \in X$, as $k \to +\infty$. We shall prove that $\tilde{x} \in F(T_l), l = 1, ..., N$. For any $y \in S$ from (1.3), (2.1), (2.4) and the accretive property of A_l it implies that

$$||A_l(x_{n_k})||^2 \le \langle A_l(x_{n_k}), j(x_{n_k} - y) \rangle / \lambda_l$$

$$\le \sum_{i=1, i \ne l}^N \langle A_i(y) - A_i(x_{n_k}), j(x_{n_k} - y) \rangle / \lambda_l$$

$$+ \alpha_{n_k} \langle -y, j(x_{n_k} - y) \rangle / \lambda_l$$

or

$$||A_l(x_{n_k})|| \le \sqrt{\frac{\alpha_{n_k}}{\lambda_l}} ||y||.$$

Therefore,

$$\lim_{k\to\infty} \|A_l(x_{n_k})\| = 0.$$

By virtue of the demiclosed property of A_i , we have $A_i(\tilde{x}) = 0$, i.e., $\tilde{x} \in F(T_l)$. It means that $\tilde{x} \in S$.

From the weak sequential continuous property of the duality mapping j and (2.3) with $y = \tilde{x}$ or the demicompact property of T_{i_0} it follows that $x_{n_k} \to \tilde{x} \in S$, as $k \to \infty$.

(iii) Let x_{n+p} be the solution of (2.1) when α_n is replaced by α_{n+p} . Then,

$$\sum_{i=1}^{N} \langle A_i(x_n) - A_i(x_{n+p}), j(x_n - x_{n+p}) \rangle + \alpha_n \langle x_n, j(x_n - x_{n+p}) \rangle + \alpha_{n+p} \langle x_{n+p}, j(x_{n+p} - x_n) \rangle = 0.$$

Hence,

$$||x_n - x_{n+p}|| \le \frac{|\alpha_n - \alpha_{n+p}|}{\alpha_n} 2||y||.$$

Clearly, if

$$\lim_{n \to +\infty} \frac{|\alpha_n - \alpha_{n+p}|}{\alpha_n} = 0,$$

then $\{x_n\}$ is a Cauchy sequence in the Banach space X. Therefore,

$$\lim_{n \to +\infty} x_n = x_* \in S.$$

Theorem is proved now.

Now, consider the iterative regularization method of zero order

$$z_{n+1} = z_n - \beta_n \left[\sum_{i=1}^N A_i(z_n) + \alpha_n z_n \right], z_0 \in X, n = 0, 1, \dots$$
 (2.5)

Set

$$L = \max\{\frac{1}{\lambda_i}, i = 1, ..., N\}.$$

Theorem 2.4. Suppose that β_n , α_n satisfy the following conditions:

$$0 < \beta_n < \beta_0, \alpha_n \searrow 0, \lim_{n \to \infty} \frac{\alpha_n - \alpha_{n+1}}{\alpha_n^2 \beta_n} = 0,$$
$$\sum_{n=0}^{\infty} \alpha_n \beta_n = \infty, \quad \overline{\lim}_{n \to \infty} \quad c_q \beta_n^{q-1} \frac{(LN + \alpha_n)^q}{\alpha_n} < 1.$$

Then $\lim_{n\to\infty} z_n = x_* \in S$, where z_n is defined by (2.5).

Proof. Let x_n be the solution of (2.1). Then, theorem 2.1 gives

$$||z_{n+1} - x_n||^q = ||z_n - x_n - \beta_n[\sum_{i=1}^N (A_i(z_n) - A_i(x_n)) + \alpha_n(z_n - x_n)]||^q$$

$$\leq ||z_n - x_n||^q$$

$$- q\beta_n \langle \sum_{i=1}^N (A_i(z_n) - A_i(x_n) + \alpha_n(z_n - x_n), j_q(z_n - x_n) \rangle$$

$$+ c_q \beta_n^q ||\sum_{i=1}^N (A_i(z_n) - A_i(x_n)) + \alpha_n(z_n - x_n)||^q,$$

where

$$\langle A_i(z_n) - A_i(x_n), j_q(z_n - x_n) \rangle = \|z_n - x_n\|^{q-2} \times$$

 $\langle A_i(z_n) - A_i(x_n), j(z_n - x_n) \rangle \ge 0,$
 $\langle z_n - x_n, j_q(z_n - x_n) \rangle = \|z_n - x_n\|^q.$

Therefore,

$$||z_{n+1} - x_n||^q \le ||z_n - x_n||^q [1 - q\beta_n \alpha_n + c_q \beta_n^q (LN + \alpha_n)^q].$$

Thus.

$$||z_{n+1} - x_n|| \le ||z_n - x_n|| [1 - q\beta_n \alpha_n + c_q \beta_n^q (LN + \alpha_n)^q]^{1/q}.$$

Since $c_q \beta_n^q (LN + \alpha_n)^q < \beta_n \alpha_n$ and $(1-t)^{\gamma} \le 1 - \gamma t$, for $0 < \gamma < 1$, then

$$||z_{n+1} - x_n|| \le ||z_n - x_n|| [1 - (q-1)\beta_n \alpha_n]^{1/q}$$

 $\le ||z_n - x_n|| (1 - \frac{q-1}{q}\beta_n \alpha_n).$

Hence,

$$||z_{n+1} - x_{n+1}|| \le ||z_{n+1} - x_n|| + ||x_{n+1} - x_n||$$

$$\le ||z_n - x_n|| (1 - \frac{q-1}{q} \beta_n \alpha_n) + M \frac{\alpha_n - \alpha_{n+1}}{\alpha_n}.$$

Applying lemma 2.1 with

$$a_n = ||z_n - x_n||,$$
 $b_n = \frac{q-1}{q}\beta_n\alpha_n$
 $c_n = M\frac{\alpha_n - \alpha_{n+1}}{\alpha_n}$

we obtain that $\lim_{n\to\infty} ||z_n - x_n|| = 0$. On the other hand, since

$$\lim_{n \to \infty} \frac{\alpha_n - \alpha_{n+1}}{\alpha_n^2 \beta_n} = 0, \text{ then } \lim_{n \to \infty} \frac{\alpha_n - \alpha_{n+1}}{\alpha_n} = 0.$$

Consequently, for any fixed positive natural number p we have

$$\forall \varepsilon > 0 \exists N(\varepsilon) > 0 : \forall n > N(\varepsilon) \Longrightarrow \frac{x_n - x_{n+1}}{x_n} < \frac{\varepsilon}{p}.$$

Thus,

$$0<\frac{\alpha_n-\alpha_{n+p}}{\alpha_n}=\frac{\alpha_n-\alpha_{n+1}}{\alpha_n}+\frac{\alpha_{n+1}-\alpha_{n+2}}{\alpha_n}+\ldots+\frac{\alpha_{n+p-1}-\alpha_{n+p}}{\alpha_n}\\ \leq \frac{\alpha_n-\alpha_{n+1}}{\alpha_n}+\frac{\alpha_{n+1}-\alpha_{n+2}}{\alpha_{n+1}}+\ldots+\frac{\alpha_{n+p-1}-\alpha_{n+p}}{\alpha_{n+p-1}}<\varepsilon.$$

It means that $\lim_{n\to+\infty} \frac{\alpha_n - \alpha_{n+p}}{\alpha_n} = 0$ for any fixed positive natural number p. Theorem 2.3 permits us to conclude that $\lim_{n\to\infty} x_n = x_* \in S$. So,

$$\lim_{n \to \infty} z_n = x_* \in S.$$

Theorem is proved.

Remark. The sequences $\alpha_n = (1+n)^{-p}, 0$

$$0<\gamma_0<\frac{1}{c_q^{1/(q-1)}(LN+\alpha_0)^{q/(q-1)}}$$

satisfy all the necessary conditions in theorem 2.4 for the case $q \geq 2$. For the case 1 < q < 2, $\alpha_n = (1+n)^{-p}$ with p < (q-1)/(2q) and $\beta_n = \gamma_0 \alpha_n^{1/(q-1)}$ also satisfy all the necessary conditions in theorem 2.4.

This work was supported by the Vietnamese Fundamental Research Program in Natural Sciences N. 100506.

References

- F.E. Browder, Nonlinear mapping of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882.
- F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228.
- Ng. Buong, Regularization for unconstrained vector optimization of convex functionals in Banach spaces, Zh. Vychisl. Mat. i Mat. Fiziki, 46, (2006), n. 3, 372-378.
- R. Chen, P.K. Lin, and Y. Song, An approximation method for pseudocontractive mappings, Nonlinear Analysis, 64 (2006), 2527-2535.

- F. Gu, The new composite iterative process with errors for common fixed points of a finite family of strictly pseudo contractive mappings, J. Math. Anal. Appl. 329 (2007), n. 2, 766-776.
- G. Marino and H.K. Xu, Weak and strong convergence theorems for strict pseudocontractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), n. 2, 336-346.
- J.G. O'Hara, P. Pillay and H.K. Xu, Iterative approachs to finding nearest common fixed points of nonexpansive mappings in Hilbert spaces, Nonlinear Anal., 54 (2003), n. 8, 1417-1426.
- M.O. Osilike and A. Udomene, Demiclosedness principle and convergence theorems for strictly pseudocintractive mappings of Browder-Petryshyn type, J. Math. Anal. Appl. 256 (2001), 431-445.
- M.O. Osilike, Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive mappings, J. Math. Anal. Appl. 294 (2004), 73-81.
- G. Wang, J. Peng, and H.J. Lee, Implicit iteration process with mean errors for common fixed point of a family of strictly pseudocontractive maps, Int. Journal of Math. Ana.1 (2007), n. 2, 89-99.
- L. Wang, An iteration method for nonexpansive mappings in Hilbert spaces, Fixed Point Theory and Appl., Article ID 28619 Volume 2007, 8 pages.
- H.K. Xu and G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optim. 22 (2001), 767-773.
- H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), n. 12, 1127-1138.
- L.C. Zeng, J.C. Yao, Implicit iteration scheme with perturbed mapping for common fixed points of a finite family of nonexpansive mapping, Nonlinear Anal., 64 (2006), n. 11, 2507-2515.

Dr Nguyen Buong received his BS and Ph.D from Department of Mathematics, Kharkov University in Ukraine. His research intrests focus on the Tikhonov regularization method for solving nonlinear ill-posed problems with monotone and accretive operators.

Institute of Information Technology, Vietnamese Academy of Science and Technology, 18, Hoang Quoc Viet, Ha Noi, Viet Nam

e-mail: nbuong@ioit.ac.vn