DOI QR코드

DOI QR Code

SENSITIVITY ANALYSIS FOR A NEW SYSTEM OF VARIATIONAL INEQUALITIES

  • Received : 2009.09.08
  • Published : 2010.07.31

Abstract

In this paper, we study the behavior and sensitivity analysis of the solution set for a new system of generalized parametric multi-valued variational inclusions with (A, $\eta$)-accretive mappings in q-uniformly smooth Banach spaces. The present results improve and extend many known results in the literature.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. R. P. Agarwal, N. J. Huang, and M. Y. Tan, Sensitivity analysis for a new system of generalized nonlinear mixed quasi-variational inclusions, Appl. Math. Lett. 17 (2004), no. 3, 345–352. https://doi.org/10.1016/S0893-9659(04)90073-0
  2. S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Res. 13 (1988), no. 3, 421–434. https://doi.org/10.1287/moor.13.3.421
  3. J. U. Jeong, A system of parametric generalized nonlinear mixed quasi-variational inclusions in Lp spaces, J. Appl. Math. Comput. 19 (2005), no. 1-2, 493–506.
  4. H. Y. Lan, Nonlinear parametric multi-valued variational inclusion systems involving (A, )-accretive mappings in Banach spaces, Nonlinear Anal. 69 (2008), no. 5-6, 1757–1767. https://doi.org/10.1016/j.na.2007.07.021
  5. H. Y. Lan, Y. J. Cho, and R. U. Verma, Nonlinear relaxed cocoercive variational inclusions involving (A, )-accretive mappings in Banach spaces, Comput. Math. Appl. 51 (2006), no. 9-10, 1529–1538. https://doi.org/10.1016/j.camwa.2005.11.036
  6. T. C. Lim, On fixed point stability for set-valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985), no. 2, 436–441. https://doi.org/10.1016/0022-247X(85)90306-3
  7. R. N. Mukherjee and H. L. Verma, Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl. 167 (1992), no. 2, 299–304. https://doi.org/10.1016/0022-247X(92)90207-T
  8. S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475–488. https://doi.org/10.2140/pjm.1969.30.475
  9. M. A. Noor, General algorithm and sensitivity analysis for variational inequalities, J. Appl. Math. Stochastic Anal. 5 (1992), no. 1, 29–41. https://doi.org/10.1155/S1048953392000030
  10. Y. H. Pan, Sensitivity analysis for general quasivariational inequalities in parametric form, Sichuan Shifan Daxue Xuebao Ziran Kexue Ban 19 (1996), no. 2, 56–59.
  11. H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), no. 12, 1127–1138. https://doi.org/10.1016/0362-546X(91)90200-K
  12. N. D. Yen, Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraint, Math. Oper. Res. 20 (1995), no. 3, 695–708. https://doi.org/10.1287/moor.20.3.695