Acknowledgement
Supported by : Korea Research Foundation
References
- R. P. Agarwal, N. J. Huang, and M. Y. Tan, Sensitivity analysis for a new system ofgeneralized nonlinear mixed quasi-variational inclusions, Appl. Math. Lett. 17 (2004),no. 3, 345–352. https://doi.org/10.1016/S0893-9659(04)90073-0
- S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Res. 13 (1988),no. 3, 421–434. https://doi.org/10.1287/moor.13.3.421
- J. U. Jeong, A system of parametric generalized nonlinear mixed quasi-variational inclusionsin Lp spaces, J. Appl. Math. Comput. 19 (2005), no. 1-2, 493–506.
- H. Y. Lan, Nonlinear parametric multi-valued variational inclusion systems involving(A, )-accretive mappings in Banach spaces, Nonlinear Anal. 69 (2008), no. 5-6, 1757–1767. https://doi.org/10.1016/j.na.2007.07.021
- H. Y. Lan, Y. J. Cho, and R. U. Verma, Nonlinear relaxed cocoercive variational inclusionsinvolving (A, )-accretive mappings in Banach spaces, Comput. Math. Appl. 51(2006), no. 9-10, 1529–1538. https://doi.org/10.1016/j.camwa.2005.11.036
- T. C. Lim, On fixed point stability for set-valued contractive mappings with applicationsto generalized differential equations, J. Math. Anal. Appl. 110 (1985), no. 2, 436–441. https://doi.org/10.1016/0022-247X(85)90306-3
- R. N. Mukherjee and H. L. Verma, Sensitivity analysis of generalized variational inequalities,J. Math. Anal. Appl. 167 (1992), no. 2, 299–304. https://doi.org/10.1016/0022-247X(92)90207-T
- S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475–488. https://doi.org/10.2140/pjm.1969.30.475
- M. A. Noor, General algorithm and sensitivity analysis for variational inequalities, J.Appl. Math. Stochastic Anal. 5 (1992), no. 1, 29–41. https://doi.org/10.1155/S1048953392000030
- Y. H. Pan, Sensitivity analysis for general quasivariational inequalities in parametricform, Sichuan Shifan Daxue Xuebao Ziran Kexue Ban 19 (1996), no. 2, 56–59.
- H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991),no. 12, 1127–1138. https://doi.org/10.1016/0362-546X(91)90200-K
- N. D. Yen, Lipschitz continuity of solutions of variational inequalities with a parametricpolyhedral constraint, Math. Oper. Res. 20 (1995), no. 3, 695–708. https://doi.org/10.1287/moor.20.3.695