DOI QR코드

DOI QR Code

A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS IN REAL BANACH SPACES

  • Bai, Chuan-Zhi (Department of Mathematics, Huaiyin Normal College) ;
  • Fang, Jin-Xuan (Department of Mathematics, Nanjing Normal University)
  • Published : 2003.08.01

Abstract

In this paper, we introduce and study a system of nonlinear implicit variational inclusions (SNIVI) in real Banach spaces: determine elements $x^{*},\;y^{*},\;z^{*}\;\in\;E$ such that ${\theta}\;{\in}\;{\alpha}T(y^{*})\;+\;g(x^{*})\;-\;g(y^{*})\;+\;A(g(x^{*}))\;\;\;for\;{\alpha}\;>\;0,\;{\theta}\;{\in}\;{\beta}T(z^{*})\;+\;g(y^{*})\;-\;g(z^{*})\;+\;A(g(y^{*}))\;\;\;for\;{\beta}\;>\;0,\;{\theta}\;{\in}\;{\gamma}T(x^{*})\;+\;g(z^{*})\;-\;g(x^{*})\;+\;A(g(z^{*}))\;\;\;for\;{\gamma}\;>\;0,$ where T, g : $E\;{\rightarrow}\;E,\;{\theta}$ is zero element in Banach space E, and A : $E\;{\rightarrow}\;{2^E}$ be m-accretive mapping. By using resolvent operator technique for n-secretive mapping in real Banach spaces, we construct some new iterative algorithms for solving this system of nonlinear implicit variational inclusions. The convergence of iterative algorithms be proved in q-uniformly smooth Banach spaces and in real Banach spaces, respectively.

Keywords

References

  1. Nonlinear semigroups and differential equations in Banach spaces V.Barbu
  2. Nonlinear Functional Analysis K.Deimling
  3. J. Math. Anal. Appl. v.185 A perturbed algorithm for variational inclusions A.Hassouni;A.Moudafi https://doi.org/10.1006/jmaa.1994.1277
  4. Comput. Math. Appl. v.35 no.10 A new completely general class of variational inclusions with noncompact valued mappings N.J.Huang https://doi.org/10.1016/S0898-1221(98)00067-4
  5. Comput. Math. Appl. v.41 A new class of generalized set-valued implicit variational inclusions in Banach spaces with an application https://doi.org/10.1016/S0898-1221(00)00331-X
  6. J. Math. Anal. Appl. v.209 Mann and Ishikawa type perturbed iterative algorithms for generalized quasi-variational inclusions K.R.Kazmi https://doi.org/10.1006/jmaa.1997.5368
  7. J. Math. Anal. Appl. v.255 Three-step iterative algorithms for multivalued quasi variational inclusions M.Aslam Noor https://doi.org/10.1006/jmaa.2000.7298
  8. J. Funct. Anal. v.6 A characterization of strict cinvexity of Banach spaces and other uses of duality mappings W.V.Petryshyn https://doi.org/10.1016/0022-1236(70)90061-3
  9. J. Math. Anal. Appl. v.220 Strongly nonlinear generalized equations L.U.Uko https://doi.org/10.1006/jmaa.1997.5796
  10. Comput. Math. Appl. v.41 Projection methods, algorithms, and a new system of nonlinear variational inequalities R.U.Verma https://doi.org/10.1016/S0898-1221(00)00336-9
  11. Arch. Math. (Basel) v.58 Approximation of fixed points of nonexpansive mappings R.Wittmann https://doi.org/10.1007/BF01190119
  12. Nonlinear Anal. v.16 Inequalities in Banach spaces with applications H.K.Xu https://doi.org/10.1016/0362-546X(91)90200-K
  13. J. Math. Anal. Appl. v.157 Chracteristic inequalities for uniformly convex and uniformly smooth spaces Z.B.Xu;G.F.Roach https://doi.org/10.1016/0022-247X(91)90144-O
  14. Nonlinear functional analysis and its applications, Ⅱ/A Nonlinear monotone operators E.Zeidler