• 제목/요약/키워드: q-series

검색결과 416건 처리시간 0.022초

AN ASYMPTOTIC EXPANSION FOR THE FIRST DERIVATIVE OF THE HURWITZ-TYPE EULER ZETA FUNCTION

  • MIN-SOO KIM
    • Journal of applied mathematics & informatics
    • /
    • 제41권6호
    • /
    • pp.1409-1418
    • /
    • 2023
  • The Hurwitz-type Euler zeta function ζE(z, q) is defined by the series ${\zeta}_E(z,\,q)\,=\,\sum\limits_{n=0}^{\infty}{\frac{(-1)^n}{(n\,+\,q)^z}},$ for Re(z) > 0 and q ≠ 0, -1, -2, . . . , and it can be analytic continued to the whole complex plane. An asymptotic expansion for ζ'E(-m, q) has been proved based on the calculation of Hermite's integral representation for ζE(z, q).

CARTIER OPERATORS ON COMPACT DISCRETE VALUATION RINGS AND APPLICATIONS

  • Jeong, Sangtae
    • 대한수학회지
    • /
    • 제55권1호
    • /
    • pp.101-129
    • /
    • 2018
  • From an analytical perspective, we introduce a sequence of Cartier operators that act on the field of formal Laurent series in one variable with coefficients in a field of positive characteristic p. In this work, we discover the binomial inversion formula between Hasse derivatives and Cartier operators, implying that Cartier operators can play a prominent role in various objects of study in function field arithmetic, as a suitable substitute for higher derivatives. For an applicable object, the Wronskian criteria associated with Cartier operators are introduced. These results stem from a careful study of two types of Cartier operators on the power series ring ${\mathbf{F}}_q$[[T]] in one variable T over a finite field ${\mathbf{F}}_q$ of q elements. Accordingly, we show that two sequences of Cartier operators are an orthonormal basis of the space of continuous ${\mathbf{F}}_q$-linear functions on ${\mathbf{F}}_q$[[T]]. According to the digit principle, every continuous function on ${\mathbf{F}}_q$[[T]] is uniquely written in terms of a q-adic extension of Cartier operators, with a closed-form of expansion coefficients for each of the two cases. Moreover, the p-adic analogues of Cartier operators are discussed as orthonormal bases for the space of continuous functions on ${\mathbf{Z}}_p$.

ON THE INFINITE PRODUCTS DERIVED FROM THETA SERIES II

  • Kim, Dae-Yeoul;Koo, Ja-Kyung
    • 대한수학회지
    • /
    • 제45권5호
    • /
    • pp.1379-1391
    • /
    • 2008
  • Let k be an imaginary quadratic field, ${\eta}$ the complex upper half plane, and let ${\tau}{\in}{\eta}{\cap}k,\;q=e^{{\pi}{i}{\tau}}$. For n, t ${\in}{\mathbb{Z}}^+$ with $1{\leq}t{\leq}n-1$, set n=${\delta}{\cdot}2^{\iota}$(${\delta}$=2, 3, 5, 7, 9, 13, 15) with ${\iota}{\geq}0$ integer. Then we show that $q{\frac}{n}{12}-{\frac}{t}{2}+{\frac}{t^2}{2n}{\prod}_{m=1}^{\infty}(1-q^{nm-t})(1-q^{{nm}-(n-t)})$ are algebraic numbers.

SYMBOLS OF MINIMUM TYPE AND OF ZERO CLASS IN EXPONENTIAL CALCULUS

  • LEE, Chang Hoon
    • East Asian mathematical journal
    • /
    • 제34권1호
    • /
    • pp.29-37
    • /
    • 2018
  • We introduce formal symbols of product type, of zero class, and of minimum type and show that the formal power series representations for $e^p$ and $e^q$ are formal symbols of product type giving the same pseudodifferential operator, where p and q are formal symbols of minimum type and p - q is of zero class.

QUOTIENTS OF THETA SERIES AS RATIONAL FUNCTIONS OF j(sub)1,8

  • Hong, Kuk-Jin;Koo, Ja-Kyung
    • 대한수학회지
    • /
    • 제38권3호
    • /
    • pp.595-611
    • /
    • 2001
  • Let Q(n,1) be the set of even unimodular positive definite integral quadratic forms in n-variables. Then n is divisible by 8. For A[X] in Q(n,1), the theta series $\theta$(sub)A(z) = ∑(sub)X∈Z(sup)n e(sup)$\pi$izA[X] (Z∈h (※Equations, See Full-text) the complex upper half plane) is a modular form of weight n/2 for the congruence group Γ$_1$(8) = {$\delta$∈SL$_2$(Z)│$\delta$≡()mod 8} (※Equation, See Full-text). If n$\geq$24 and A[X], B{X} are tow quadratic forms in Q(n,1), the quotient $\theta$(sub)A(z)/$\theta$(sub)B(z) is a modular function for Γ$_1$(8). Since we identify the field of modular functions for Γ$_1$(8) with the function field K(X$_1$(8)) of the modular curve X$_1$(8) = Γ$_1$(8)\h(sup)* (h(sup)* the extended plane of h) with genus 0, we can express it as a rational function of j(sub) 1,8 over C which is a field generator of K(X$_1$(8)) and defined by j(sub)1,8(z) = $\theta$$_3$(2z)/$\theta$$_3$(4z). Here, $\theta$$_3$ is the classical Jacobi theta series.

  • PDF

A High Gain and High Harmonic Rejection LNA Using High Q Series Resonance Technique for SDR Receiver

  • Kim, Byungjoon;Kim, Duksoo;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • 제14권2호
    • /
    • pp.47-53
    • /
    • 2014
  • This paper presents a high gain and high harmonic rejection low-noise amplifier (LNA) for software-defined radio receiver. This LNA exploits the high quality factor (Q) series resonance technique. High Q series resonance can amplify the in-band signal voltage and attenuate the out-band signals. This is achieved by a source impedance transformation. This technique does not consume power and can easily support multiband operation. The chip is fabricated in a $0.13-{\mu}m$ CMOS. It supports four bands (640, 710, 830, and 1,070MHz). The measured forward gain ($S_{21}$) is between 12.1 and 17.4 dB and the noise figure is between 2.7 and 3.3 dB. The IIP3 measures between -5.7 and -10.8 dBm, and the third harmonic rejection ratios are more than 30 dB. The LNA consumes 9.6 mW from a 1.2-V supply.

INNOVATION ALGORITHM IN ARMA PROCESS

  • Sreenivasan, M.;Sumathi, K.
    • Journal of applied mathematics & informatics
    • /
    • 제5권2호
    • /
    • pp.373-382
    • /
    • 1998
  • Most of the works in Time Series Analysis are based on the Auto Regressive Integrated Moving Average (ARIMA) models presented by Box and Jeckins(1976). If the data exhibits no ap-parent deviation from stationarity and if it has rapidly decreasing autocorrelation function then a suitable ARIMA(p,q) model is fit to the given data. Selection of the orders of p and q is one of the crucial steps in Time Series Analysis. Most of the methods to determine p and q are based on the autocorrelation function and partial autocor-relation function as suggested by Box and Jenkins (1976). many new techniques have emerged in the literature and it is found that most of them are over very little use in determining the orders of p and q when both of them are non-zero. The Durbin-Levinson algorithm and Innovation algorithm (Brockwell and Davis 1987) are used as recur-sive methods for computing best linear predictors in an ARMA(p,q)model. These algorithms are modified to yield an effective method for ARMA model identification so that the values of order p and q can be determined from them. The new method is developed and its validity and usefulness is illustrated by many theoretical examples. This method can also be applied to an real world data.

IDENTITIES AND RELATIONS ON THE q-APOSTOL TYPE FROBENIUS-EULER NUMBERS AND POLYNOMIALS

  • Kucukoglu, Irem;Simsek, Yilmaz
    • 대한수학회지
    • /
    • 제56권1호
    • /
    • pp.265-284
    • /
    • 2019
  • The main purpose of this paper is to investigate the q-Apostol type Frobenius-Euler numbers and polynomials. By using generating functions for these numbers and polynomials, we derive some alternative summation formulas including powers of consecutive q-integers. By using infinite series representation for q-Apostol type Frobenius-Euler numbers and polynomials including their interpolation functions, we not only give some identities and relations for these numbers and polynomials, but also define generating functions for new numbers and polynomials. Further we give remarks and observations on generating functions for these new numbers and polynomials. By using these generating functions, we derive recurrence relations and finite sums related to these numbers and polynomials. Moreover, by applying higher-order derivative to these generating functions, we derive some new formulas including the Hurwitz-Lerch zeta function, the Apostol-Bernoulli numbers and the Apostol-Euler numbers. Finally, for an application of the generating functions, we derive a multiplication formula, which is very important property in the theories of normalized polynomials and Dedekind type sums.