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QUOTIENTS OF THETA SERIES AS RATIONAL
FUNCTIONS OF jig

Kuk JiN Hong AND JA KYUnNG Koo

ABSTRACT. Let Q(n,1) be the set of even unimodular positive defi-
nite integral quadratic forms in n-variables. Then n is divisible by 8.
For A[X] in Q(n, 1), the theta series 04(2) = 3 xczn e Xl (2 e
# the complex upper half plane) is a modular form of weight n/2 for
the congruence group I'1(8) = {8 € SL2(Z) | 6=(§}) mod 8}
If > 24 and A[X], B[X] are two quadratic forms in Q(n,1), the
quotient 84(2)/8g(z) is a modular function for T'1(8). Since we
identify the field of modular functions for I'1(8) with the function
field K(X1(8)) of the modular curve X;(8) = T1{8\H" (H” the
extended plane of $) with genus 0, we can express it as a rational
function of j1 g over C which is a field generator of K(X1(8)) and
defined by 71.8(2) = #2(22)/83(4z). Here, 83 is the classical Jacobi

theta series.

1. Introduction

Let $ be the complex upper half plane and let I'; (V) be a congruence
subgroup of §Lo(Z) whose elements are congruent to ((1] ’;) mod N

(N=1,2,3,...). Since the group I'1 (¥) acts on $ by linear fractional
transformations, we get the modular curve X;(N) = I'1(N)\H*, as the
projective closure of a smooth affine curve I'1 {(V N\$, with genus g1 n.
Here, $* denotes the union of § and P(Q). We identify the function
field K(X1(N)) of the curve X;(IN) with the field of modular functions
for T1(N). Since g1n = 0 only for the eleven cases 1 < N < 10 and
N =12 ([6]), K(X1(8)) becomes a rational function field C(j; ) where
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N,8(2) = 03(22)/03(42) for z € H and 3 is the classical Jacobi theta
series ([5]).

This article is a continuation of our previous works ([2], [9]). Let
A = (a;;) be a symmetric, positive definite and integral n x n matrix
for which a;; = 0 (mod 2) and detA = 1. We associate to A a quadratic
form A{X] = X*AX, X = (z1,--- ,z,) which we call a positive definite
integral even unimodular quadratic form in n variables. Then n = 0
mod 8 ([10], [13]). Let Q(n,1) be the set of even unimodular positive
definite integral quadratic forms in n-variables. Two forms A[X] and
B{X} are called equivalent (write A|X] ~ B[X]) if B = C*AC for some
C € GLn(Z). Set Q(n,1) = Q(n,1)/ ~ . The cardinality |Q(n,1)| is
finite, so we can speak of the class number h(Q(n,1)) = [Q(n,1)|. It is
well-known that h({(Q(8,1)) = 1, R(Q(16,1)) = 2 and h(Q(24,1)) = 24.
The class number A(()(n,1)) has not been determined yet for n > 32.
Instead, we see that the class number grows remarkably fast (Chap V,
[13]). For A[X] € Q(n,1), the theta series

Ba(z) = Z emEAX] — 1 4 Z ra(m)e’™™* (2 € 9),
XeZn m=1 .

where r4(m) is the cardinality of the solution set {X € Z"| A[X] =
2m} (m > 1), is a modular form of weight % for I'(1)(= SL3(Z)) and
hence for I';1(8). In cases n = 8 and 16, the quotients of theta series are
trivial, that is,

04(2)/0p(2) =1 for A[X],B[X] € Q(n,1)
({13], p110). If n > 24 and A[X], B[X] are two quadratic forms in

Q(n,1) then the quotient 64(2)/@p(z) is a rational function of J(z)
([9], Theorem 1). Meanwhile, it is theoretically natural to reduce the
study of modular forms with respect to a congruence subgroup to that
of type I'1(V), and hence it is interesting to express the quotient as a
rational function of j; g, too. Since C(j) (j = 1728.J) is a subfield of
C(j1,8), we can express j(2) as a rational function of j; g(z) (Corollary
11). Therefore we are able to write #4(2)/05(z) as a rational funtion of
71,8 (Theorem 8) as desired. Unlike the previous ones ([2], [9]), however,
we don’t have enough cusps to estimate the normalized Eisenstein series
E4(z) in the process. To overcome such obstacle and finish calculations,
we shall take an additional point p = e?"#/3 from the upper half plane.
In particular when n = 24 we shall completely determine in Appendix
all the theta series 84(2) as polynomials over Q in #3(2z) and 84(4z).
Throughout the paper we adopt the following notations:
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. gy = eriz/h

e I(N) ={y € SLy(Z)| y=1I mod N}

s M (I'(N)) the space of modular forms of weight k for the group
[(N)

o M k (T1(N)) the space of modular forms of half integral weight for
the group I'y1(N)

® M (T'1(N)) the space of modular forms of weight k for the group
T'1(N)

e z' the transpose of an integral column vector z

11 0 -1
o T = (0 1), S = (1 0 ) two generators of I'(1)

2. Preliminaries

For p,v € R and 2 ¢ §, put

1
0,.(z) = Z exp{mi(n + ~p)°z + minv}.
neZ 2

This series converges uniformly for Im(z)> n > 0, and hence defines a
holomorphic function on $. Then the Jacobi theta functions fs, #3 and
#, are defined by

2
82(2) —@10 z (n+ )

neEL

03(z) == Oo(z) = th
ned

84(2) == ©01(z) = 3 _(~1)"qg} .
nez

And we have the following transformation formulas ([12], p218-219)
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(1) bz +1) = ei™6y(2)
@ fo(z+1) = 6a(2)

(3) O4(z + 1) B1(2)

@ 0(—) = (~iz)hbu(2)
Q a(—3) = (~i2)0u()
(6) o) = (-i)i6y()

Furthermore, we have the following theorem at hand.

THEOREM 1. (i) 63(22) € M%(fo(4)) and 03(4z) € M%(fg(S),XQ),
where x2(d) = (3) and (2,d) = 1.
(i) K(X1(8)) = Cjrs) and jig(o0) = 1, j18(0) = v2, j1a(3) = o
(simple pole), j18(3) = —1, j]_,g(%) = -2, j18(3) = 0 (simple zero)
where 00,0, %, %,% and % are the six cusps of X1(8).

Proof. [5], Theorem 9. O

3. Structure of M;,(I'1(8))

From the dimension formula for a congruence subgroup of I'(1) ([10]
§2.5 or [14] §2.6), we get

PrOPOSITION 2. Fork > 1,
dlmCMgk(rl(S)) =4k + 1.

Proof. We sce from [6] that g = 0, 0o = 6 and I';1(8) has no elliptic
elements. Thus the result follows. a

For any positive integer %, M £ (rh(8) =M k (T'1(8)). Indeed, for v =

(Cct fl) e T1(8), j(v,2) = (§)vca+d since d = 1 mod 4. Since k is

even, 7(v, 2)*¥ = (cz -I-d)%, that is, M & (F'1(8)) has the same automorphy

factor as that of My (I'1(8)). For convenience, let us put s{z) = 03(2z)
2 .

and t(z) = 03(4z).
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PROPOSITION 3. The vector space Mok (I'1(8)) is generated by s**
s¥—1lt ... % gver C.

Proof. Tt follows from Proposition 2 that the dimension of My (I'1(8))
is 4k 4 1(k > 1}. We then observe by Theorem 1 and previous remark
that s** i (0 < i < 4k) are members of My (I'1(8)). Thus it is enough
to show that the functions listed above are in fact linearly independent
over C. Suppose that

4k

D ais(z) T H(z) =0 for ¢; € C.

i=0
Since F(z):= (27) 12A(z) = —5{62( ¥03(z)84(2)}® ([12], p.222) and
F(z) has no zeros on $ as is well known ([7], [12] ), t(2) never vanishes
on . If we divide the above by t(2)*, we obtain that

Zc,fk ‘=0 forg €C.

Here it is necessary to show that 7 g is transcendental over C. Choose
any ¢ € C and consider j; g —¢. Since j)g—c is a nonconstant modular
function, it has at least one zero. This guarantees that the image of
g is all of C. But if we had an algebraic equation satisfied by j; g,
then the image of j; g would be mapped into the set of solutions of
the algebraic equation which is at most finite. This is impossible, which
concludes the Proposition. n

In order to express a modular form as a polynomial in two variables
s5(z) and t(z), we have to be certain that they are algebraically indepen-
dent. To this end we are in need of the following.

LEMMA 4. Iffk—i-fk 1+---+fo=0wherek € Nand f; € M; (T'1(8))
foralli=0,1,--- ,k, then f; =0 for all .

Proof. The argument is almost the same as that of Lemma 11 in
[3]. a

Assume that there is a polynomial ¥ € C[X,Y] satisfied by s(z)
and t(z). By Theorem 1 and Lemma 4, we may suppose that F is
homogeneous. Let deg(F) =n. Then

F(S ) Z k]ls—
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for a;, € C. Since j1 8 is transcendental over C, ax = 0 for all &; hence
F = 0. This proves the algebraic independency of s(z) and #(z).

For later use, we will derive the following identities. To begin with, let
us set 0; = 6;(2) (1 = 2,3,4), t = t(z) and s = s{z) for convenience in
writing.

LEMMA 5. 0202 = 4t* - 45?2+ s? and 0440} = —8t* +85%t2 + 25"
Proof. Recall from (3], Theorem 12 that

1 z z z z
04 = 7(03(5)* +205(0)%0u(2)? + 6:(5)").
Then we have
(7) 54 = 03(22)" = %(93 + 26267 + 61

t4 = 63(42)* = Z(93(2z)4 + 264(22)204(22)% + 04(22)).

On the other hand, since 203(22)? = 63 + 62 and 04(22)% = 0304 ([12]),
we get

At* = 03(22)* + 202(22)%04(22)% + 04(22)*

= 3063+ 602 + 205(22)764 (22" + 6365

_ i(eg + 66202 + 62) + 252262 — %)
because 62 = 203(22)% — 62.
Hence
(8) 03 + 66367 + 61 = 16¢* — 16¢%s% + 8s%.
The result is immediate from (7) and (8). O

PROPOSITION 6. Let f € My (I'(1)). Then f is a homogeneous poly-
nomial over C in s(z)? and t(z)? whose degree is 2k.

Proof. Since f € Mop(T'1(8)) N Mok (T'1(4)), by Proposition 5 in [2]
and Proposition 3, we can write
f(z) = plof2), B(2))
= q(s(2),1(2))

where p is a symmetric homogeneous polynomial over C in a(z) =
82(22)* and B(z) = #3(22)! whose degree is k and ¢ is a homogeneous
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polynomial over C in s(z) and ¢(z) whose degree is 4k, On the other
hand, we have the following identities on a{z), 8(z), s(z) and #(z):
a(z) = B2(22)*
1

= 3068 — 03 because 26,(22)" = £ (63— 3)

1
= (05 + 03 — 26363)

=4(s%t2 — t*) by Lemma 5
B(z) = s(=)*.
Thus, substituting —s for s and —1 for ¢ we see that o and 3 remain

unchanged. This implies that g(s, —t) = ¢(s,t) and g(—s,t} = ¢(s,1),
that is, g involves the terms whose degrees of s and ¢ are even. O

We readily get from Proposition 6
COROLLARY 7. Let fi1,fo € My (T(1)). Then
fi(z) _ p(hs(2)%)
f(z)  a(1s(2)?)

where p,q are polynomials in one variable whose degrees are less than or
equal to 2k.

4. Proof of Theorem 8

Now we consider the theta series associated to quadratic forms.
Let @Q(n,1), A[X] and &4(z) be as in the introduction. In cases n = 8
and 16, the quotients 64(2)/8g(z) are 1 for A[X], B{X| € Q(n,1). For
n > 24, we shall prove the following theorem.

THEOREM 8. For any two quadratic forms A, B in Q(n,1) and for
n > 24,
8a(2) P(Jis(z))

05(2)  q(75(z))
where p,q are polynomials over Q in ji4 of degree 3(n — n{mod 24)).

Since 64 is an element of My (T(1)), we note that the quotient 64(z)

/6g(z) can be written as the form in Corollary 7 with p, ¢ defined over
C. The following lemma, however, claims that p and ¢ are in fact defined
over Q.
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LeEMMA 9. For n =0 (mod 2), let f € M=z(I'(1)). If f has a Fourier
expansion with rational coefficients, then it can be written as a homo-
geneous polynomial over Q in s(z)? and t(z)* whose degree is %.

Proof. The proof goes almost in the same manner as that of Lemnma
8 in [2]. O

LEMMA 10. Let E4(z) be the normalized Eisenstein series of weight
4 and level 1 and F(z) = (21)"'2A(z), where A(z) is the modular
discriminant. Then

Ex(z) =s(2)® + 565(2)51(2)% — 40s(2)1#(2)* — 32s(2)%(2)® + 16¢(2)®,
F(z) =3Is(z)22t(z)2 - lzs(:.f)mt(z)4 + 32s(2)'81(2)% — 140s(2)*0t(2)®
+ 392s(2) Y 4(2)10 — 728s(2) % (2)"% + 8965(2) 104 (2)™

— 7045(2)84(2)1® + 320s(2)84(2)1® — 64s(2)*t(2)%.
Proof. Since Ey(z) = 1+ 240372, o3(n)q™ with oy(n) = Yy, d,
again by Proposition 6 and Lemma 9, E4 can be written as
Ea(2) = a15(2)% + a25(2)%8(2)% + aas(2)*t(2)? + ays(2)%t(2)® + ast(2)®

for a; € Q. Evaluating both sides at some cusps of I';(8) and p = s,
we shall determine all the a}s. Dividing the above by t(z)®, we come up
with
E4(z)
t(z)®
In the following, we'll use the notation: f(z)|y = f(yz) for v € T'(1).
(i} s = 0; Observe that S - oo = 0.

Ey(2)|s = 2* - {Ea(2)lis1, -
£(2)%|s = 03(42)%|s

= mj18(2)® + agj18(2)° + azjra(2) + asra(z)* + as.

—93(—%)
4

= {(-12)26:(0)1° by (5)
493 )8

Therefore we get

E4(Z)| P {E4(z)|[5]4}

m = 28,
z—ios t( ) z——rzoo (§)493(§)8
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from which we derive
(9) 28 = 2%a; + 2%ay + 2%a3 + 2a4 + a5 because 51,8(0) = V2.
(i} s = &; Observe that (ST~%S)-00 =1

t(2)°ls = (1)493(1)8 by (i),
(2572 = (2)463(3)8|T-2
= (5(z = DY6s(5(z )P

- 2_18(z — 24 {03(2) — i8a(2)}.

Here the last equality can be justified as follows:

We recall from [1], p104 that 6,(22) = 3{03(Z) — 64(Z)} and 65(22) =
2{03(%) + 04(%)}. Summing up the above equations and replacing z by
1(z—2) vyields that 63(3(z —2)) = 8a(z — 2) + 0a(z — 2).

Then it is easily checked by making use of the transformation formulas
of theta functions in (1), (2) and (3).
And

#(2)%|g725 = %8‘(2 ~ 2){03(2) - i62(2)}°|s
- l(_% — 2)4{93(—-;-) - 3'92(_%)}8
P 4 1 1
218 % {(—i2)365(2) — i(—i2) 30, ()}
by (4) and (5)
= %(22 +1){85(2) — i8a(2)}°.

On the other hand, since E4(z)|gr—25 = (22 + 1)*. {E4(2)|is7-250.}5
we have

im Ey(z) )| a5 = lim (22 + 1)* - {Ey(2)|[sT-285)4}
z—+ioo t( z—ioo —3- (22 + 1)4{83(2) — i64(2)}8
_ % _ o4
C(1-4)®
Hence we obtain
(10) as = 24 because j])g(l) = 0.

2
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Now, dividing E4(z) by s(2)® this time, we work with

Eylz a a a a

. .

s(z) Mg Nhs Jig Jig
(iii)s = 1; Observe that (ST—*5) o0 = §.

We have
3(2)%ls = (5)*05(Z)* by (5) and so

szl = (e — 9*5(52) by (2) and (3).

Thus we derive

1 1
5(2)%|gp-a5 = ?(z - 4)493(§Z)B|S

= (s — 4o~

Z 4 1
- L Cagieea) by )
_ 1 (4241

=5 (—i22)103(22)®
= (4z + 1)*03(22)®.
On the other hand, since E4(z)|gp-15 = (42 +1)*- {Ea(2)isr-1514}>

im E4(2)| S (4z + 1)* - {Es(2)lis7-25),}
smivo §(z)8 01 5 T ihie (dz+ 1) -63(22)8

Hence we get

1
(11) a; = 1 because jl’g(z) = 0.
(iv) s = 00
Since j1 8(00) = 1, we can easily get
(12) a1 +as+az+ag +as =1

Finally, we have to estimate the value jl,g(p)2 to find out as,a3 and
a4 because we can not use other cusps of X;(8) any more. In fact,
hs(d) = -1, hs(3) = —+/2 and the expression for E; involves only
the square terms of s{z) and #(z); hence the evaluation at the cusps %
and % will be the same as that of the cases at s = 0o, 0. Therefore we
must work out at some other point in $. We'll take p as such a point
z € H because we already know the value of E4(z) at p and, moreover,

can calculate the value j; g(p)? in the following.
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(v)z = p; Observe that
a15(p)® +a25(p)%t(p)?+ass(p)*t(p)* +ass(p)*t(p)® +ast(0)® = Ea(p) = 0
([7], p. 115 or [13], p. 85). Dividing the above by t(p)3( 0), we get
(13) a1j1,8(p)® + a2jr8(0)® + asjrs(p)* + asinslp)® +as = 0.
At this stage we are required to compute the value of j; g(2)? at z = p.
f8(2)? = g%
2604(22)?

T 05(22)% + 04(22)2

03(2z
04(22

g
274(42)? , B3(%)
= m because __’,’4(2) =
74(22) + ja(22) 7!
5ia(22) + ja(22)71) +1
1
because 74(22)% = 5(3’4(2) + 74(z)”1) (]3], Lemma 15)
23222+ 1)
(7a(22) + 1)2°
On the other hand, since j4(2p) = (' with ¢, = e (shown in the
proof of Proposition 23, [4]), we get
2G4 +1)
(Car +1)?
Due to (9), (10), (11), (12) and (13) we are able to summarize what we
have done so far as follows:

a; =1,as = 16,a2 + a3 + a4 = —16,4as + 2a3 + a4 = 112,

because 263(22)% = #3(2)? + 64(2)?

F18(p)* =

a1518(0)° + azj18(p)® + azjra(p)* + agjrs(p)? + a5 = 0.

-2
Plugging a3 = —3as + 128, as = 2ap — 144 and j15(p)? = 242+ into

(Coa +1)2
the last yields that
—4{¢2 1) —128(( 2+ D2 (€0, 1) HT2(C0 + 1 (¢ +1)5 —4(¢5 +1)°
2Co 2+ 13 (o +1)2-3(Lo T 12(G, 1+ (G 1) (5 +1)8
_ 28{(=vV24v8)+(—3v2+6)i}
T H{(-V2+VEH(-3v2+VE)i}

gy =
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= 56.
Therefore a3 = —40 and a4 = —32. Consequently, we obtain
Ey(z) = s(2)® + 565(2)5¢(2)? — 40s(2)*4(2)* — 325(2)%t(2)® + 16£(2)®.

Next, we consider the case of F.

Fe 2—18939392
_ 2_18(9592)4{93 —6%)% by the relation’ 02 = 02 + 0% ([12])
= (6301104 + 09 - a0}of)

= 2—18(454 —4g%2 4 34)4{(_&4 + 8522 + 234)2 _ 4(4t4 482y 34)2}
by Lemma 5
= 2%(64322t2 — 108854 + 819251845 _ 3584041648
+ 1003525419 — 186368512412 4 229376510414

— 1802245%1° + 819205541 — 1638451¢20)
1 1
= Zs2zt2 — £520t4 + 3251845 — 140558 + 392514410 — 728512312
+ 89650t — 70458416 + 3205518 — 6451420, a

Since C(j) is a subfield of C(j1,8) and j(z) = Es(2)*/F(z), we get the
following corollary by Lemma 10.

COROLLARY 11. )
, (0194
Hz) 30)
where a(z) = 4- (524 + 168573 + 92885%%, + 162080;1% — 382224515 —
192005 % +515840;1% — 199680;1% — 21734455 g +133120; o -+ 18432j{ s —
2457657 3 +4096) and B(z) = j7% — 1753% + 12851% — 56051 + 1568;1% —
291251% + 358451% — 281658 4 + 12805¢ 3 — 25657 .

We are now ready to prove Theorem 8. In [9], Theorem 1, we showed
that for n > 24 and for any two quadratic forms A[X] and B[X] in
Q(n, 1),

0a(z) _ fJ(2))

05(z)  9(J(2))’
where f and g are polynomials over Q in J = 5 of degree [24].

ZEH
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On the other hand, we see from Proposition 6 and Lemma 9 that 64
and 85 are homogeneous polynomials over @ in s(2)? and #(z)? whose
degree is . Therefore, the theorem follows from the above result and
Corollary 11.

REMARK 12. We see from Corollary 11 that C(ji3)is an algebraic
extension of C(7) of degree [T(1) : T1(8)] = 24 ([10], Theorem 4.2.5) and
the irreducible polynomial of j; g over C(j) is given by

X2 4+ (168 — 19)X% + (9288 + Y5) X% + (162080 — 325) X% —
(382224 —1407) X 16 ~ (192004-3925) X 14+ (515840+72857) X 12 — (199680+
8967).X 10 — (217344 — 7045) X® + (133120 — 3205) X© + (18432 + 645) X —
24576 X2 + 4096.

5. Example

In case n = 24, we are able to completely determine the polynomials
discussed in Theorem 8.

THEOREM 13. For A € (24, 1),

0a(2)
= % (168 + A _41728

)s22t2 + (9288 — %(QA — 1728))s%0¢4

+ (162080 + 32(ga — 1728))s*%¢5 — (382224 + 140(g4 — 1728))s'6¢®
— (19200 — 392(ga — 1728))s"#'0 4 (515840 — 728(g4 — 1728))s"¢!2
— (199680 — 896(g4 — 1728))s't" — (217344 + T04(g4 — 1728))s%¢'°
+ (133120 + 320(g4 — 1728))s%'® 4 (18432 — 64(g4 — 1728))s™t%°

— 245765122 + 40962,

where ga = ca+Z582 = r4(1)4+1008 (€ Z) depending on the Niemeier’s
classification ([11]). Here c4 = r4(1) — %322 and r4(1) denotes the

number of integral solutions x = (xy,--- ,Zo4) of Alz] = 2tAx = 2.

Proof. Since Fj3 and F span Mi12(I'(1)) and F = 5 (E§ — E?), we
can write

64(z) = E1a(z) + caF(2)
= Bs(2)° + gaF(2)
(14) = Eq(2)® + (ga — 1728)F(z).
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Compairing the ¢g-expansions, we get ga = ca+ 7662;}148. Now, plugging
the results from Lemma 10 into {14), we obtain the assertion. O

REMARK. The following list in the Appendix is first related to theta
function identities ([1], p120 and p134) discovered independently by J.H.
Conway and N.J.A. Sloane (in the notation of [1], #p, . instead of fp,
should be considered), and so it is meaningful to express #4(z) in terms
of various Jacobi theta series. Secondly, the second named author has
shown in [8] that the Ramanujan number 7(m) is zero for some integer
m(> 10'9) if and only if ra(m) = rp(m) for any two quadratic forms
A[X] and B[X] in (}(24,1) whose corresponding theta series 84, 65 are
distinct. On the other hand, since the classical Jacobi theta series have
simple go(= €™?) expansions, we feel that the list would be useful in
the study of D.H. Lehmer’s conjecture on 7(m) {[13], p98) which reads
“r(m) # 0 for all m > 1.

Appendix

By Theorem 13, the values of 74(1) in (9) of [8] and following
Niemeier’s notation, we obtain the following identities.
O3xEs(2) = OEs@ D1 (2) =
s%4 + 16852242 + 928852014 + 16208051840 — 38222451648 — 19200514210
+515840512¢12 — 199680510414 — 21734455416 4+ 13312055418 + 184325420
—245765%¢22 + 4096124

0i:, @ B Dy (?) = 08, @ 4, (2) =

24 1 0652242 + 10512529¢4 + 15286451848 — 34790451648 — 132096514410
+725504512¢12 — 457728510414 — 1459258416 1 409605%¢18 + 3686454120
—24576s%t22 + 4096424

91324 (z) =

324 4 1457222 4 1190652°4% + 14236851818 — 30198451648 — 260672514410
4964288512112 — 751616510414 + 21632055416 — 64000s%¢18 + 578565420
—2457652£%2 4 4096t

001, D D12 (z) =

924 412052242 + 1010452%2 + 15593651845 — 36134451643 — 94464511410
1655616512412 — 371712510414 — 8217655¢16 -+ 7168055418 + 307205420
— 2457652422 4 4096¢%4

b3 Dg (z) =

$2% 1+ 7052242 | 1092752044 4 14979251846 — 33446451618 — 169728514410
+795392512412 — 543744510414 4+ 5200258416 4 1024055418 + 430085420
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—2457652¢22 + 4096¢%4

ODo @ AL (%) =

$24 + 8452242 4 1071652041 + 15132851845 — 34118451618 — 150912514410
+760448512412 — 500736510414 + 1920055416 + 2560055218 + 3093654420
—245765%t%2 + 40962

O4xEs(2) = Op,@ . @ AL (2) =

s2% + 6052212 + 111245204 + 1482565188 — 32774451648 — 188544514410
+830336512£12 _ 586752510414 + 8678455416 — 512055418 4 460805420
—245765%t22 + 4096t%4

OaxDe(2) = Opg @ An @ A (%) =

$2% 4 9852242 1+ 1132852041 + 1467205828 — 3210245148 — 207360514¢10
4865280512412 — 629760510414 + 12057655416 — 20480518 4 4915254420
—245765%t22 + 4096t>4

605@D5@A7@A7(z) =

921 1 3652242 1 1153252044 1 14518451815 — 31430451648 — 226176514410
4900224512412 — 672768510414 + 15436858416 — 3584056¢18 4 5222454420
—245763%t22 + 409624

O3 Ag(2) =

s24 |+ 49522;2 1 1143052044 1 14595251848 — 31766451648 — 216768511£10
4882752512412 _ 651264510414 + 1374725516 — 2816055¢1% + 506885420
— 2457652422 + 409624

84,4 (2) =

824 4 13852242 + 9798520¢4 + 15824051845 — 371424516¢% — 6624051410
+603200512£12 — 307200510414 — 1328645816 + 9472035418 + 2611254420
—245765%122 + 409624

O A (2) =

24 1 6652242 1 1102252041 4 14902451846 — 33110451648 — 179136514410
+812864512¢12 — 565248510114 + 6988858116 + 256055418 + 4454454420
—245765%1%2 + 409624

B6x D4 (2) = 0D, @(axs)(2) =

s24 1 2452242 1 1173652041 + 14364851818 — 30758451648 — 244992514410
4935168512412 — 715776510414 + 1881605546 — 5120058¢18 + 552065%¢20
— 2457652122 + 4096¢%4

B1x A (2) =

524 1 3052242 + 1163452044 4 14441651846 — 31094451648 — 235584514410
1917696512412 _ 694272510414 1 17126453416 — 4352055¢18 + 537605%¢20
—245765%1%2 + 4096124
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96XA4 (z) =

524 + 1852242 + 1183852044 -+ 142880585 — 30422451648 — 254400514410 +
952640512412 — 737280510811 + 20505655416 — 5888056418 4 5683254420 —
2457652122 + 4096124

38><A3(Z) =

s24 13752242 1 11515520¢4 + 14531251846 — 3148645168 — 224608514410 +
897312512412 — 669184510414 - 15155258410 — 3456050418 + 5196854120 —
24576222 + 4006t

G12xa,(2) =

324 4 652242 1 1204252044 + 14134451845 — 29750451618 — 273216514410 +
987584512412 — 78028850414 + 23884858416 — 7424050418 + 5990454120 —
245765%t%2 + 4096¢24

924><A1 (Z) =

5244121445%044 114057651846 —20414456¢8 28262454104 1005056512412
— 801792510411 1 25574458416 — 8192055¢18 + 6144054420 — 245765%12% +
4096124

gGo (Z) =

524 — 1252242 1 1234852044 + 13904051818 — 28742451618 — 301440514410 +
1040000512412 — 844800510414 + 28953655416 — 9728055118 + 6451254420 —
245765222 -+ 4096¢24
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