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AN ASYMPTOTIC EXPANSION FOR THE FIRST

DERIVATIVE OF THE HURWITZ-TYPE EULER ZETA

FUNCTION†
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Abstract. The Hurwitz-type Euler zeta function ζE(z, q) is defined by

the series

ζE(z, q) =

∞∑
n=0

(−1)n

(n+ q)z
,

for Re(z) > 0 and q ̸= 0,−1,−2, . . . , and it can be analytic continued
to the whole complex plane. An asymptotic expansion for ζ′E(−m, q) has

been proved based on the calculation of Hermite’s integral representation

for ζE(z, q).
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1. Introduction

Elizalde [10] gave an asymptotic expansion for the first derivative

ζ ′(−n, q) ≡ ∂

∂z
ζ(z, q)

∣∣∣∣
z=−n

, n = 0, 1, 2, . . . , (1)

of the Hurwitz zeta function

ζ(z, q) =

∞∑
n=0

1

(n+ q)z
, Re(z) > 1, q ̸= 0,−1,−2, . . . (2)

in inverse powers of q. The procedure employed is similar to the standard method:
Watson’s Lemma and Laplace’s method. The Hurwitz zeta function ζ(z, q) ad-
mits an analytic continuation to the entire complex plane except for the simple
pole at z = 1, and the Riemann zeta function ζ(z) is a special case of ζ(z, q):

ζ(z, 1) = ζ(z)
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(see [6, 10, 17]).
The first order derivative of ζ(z, q) for z has also been linked to some integrals

involving cyclotomic polynomials and iterated logarithms in [2], polygamma
functions of negative order in [3], the multiple gamma functions in [4, 5, 7],
and a log-gamma integral in [8] and [11]. In [15], Seri obtained an asymptotic
formula for higher derivatives of the Hurwitz zeta function ζ(z, q) with respect
to its first argument as ζ(m)(z, q) = ∂mζ(z, q)/∂zm.

The Hurwitz-type Euler zeta function (or, equivalently, the alternating Hur-
witz zeta function) is defined by the series (see [17, p. 37, (2.2)] and [9, p. 514,
(3.1)])

ζE(z, q) =
∞∑

n=0

(−1)n

(n+ q)z
, (3)

where Re(z) > 0 and q ̸= 0,−1,−2, . . . (cf. [14, p. 308, (3.4)]). It can be analytic
continue as an entire function in the complex plane. The Dirichlet eta function
(or, the alternating Riemann zeta function) η(z) is a special case of ζE(z, q):

ζE(z, 1) = η(z) =

∞∑
n=1

(−1)n+1

nz
, (4)

where Re(z) > 0 (see [9, p. 514, (3.2)]). As in [10], we denote by

ζ ′E(z, q) ≡
∂

∂z
ζE(z, q). (5)

In this note, we shall prove an asymptotic expansion for ζ ′(−m, q) based on
the following calculation of Hermite’s integral representation for ζE(z, q).

Proposition 1.1 ([17, p. 38, Proposition 1]). For all z and Re(q) > 0

ζE(z, q) =
1

2
q−z + 2

∫ ∞

0

(q2 + t2)−z/2 sin

[
z tan−1

(
t

q

)]
eπtdt

e2πt − 1
.

Remark 1.1. This expression exhibits the non-singularity structure of ζE(z, q)
(and J(z, q) in Williams and Zhang’s [17] notation) explicitly, since the integral
inside can be analytic continued to all complex numbers z ∈ C due to it uniformly
convergents for |z| < R with R > 0.

Proposition 1.2. For n = 0, 1, 2, . . . , we have an asymptotic expansion

ζE(z, q) =
1

2
q−z − 1

2

n∑
k=0

E2k+1(0)Γ(2k + z + 1)

(2k + 1)!Γ(z)
q−2k−z−1 +O

(
1

q2n+z+3

)
for |q| tending to ∞, where the gamma function Γ(z) is defined by the following
Mellin integral

Γ(z) =

∫ ∞

0

e−ttz−1dt
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and En(x) are the Euler polynomials defined by the generating function

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
. (6)

Remark 1.2. This formula was studied by Hu and Kim in [12] from a different
method. In particular, Hu and Kim [12] has derived the asymptotic expansions

for higher order derivatives
(

∂
∂z

)m
ζE(z, q), where |q| → ∞ and z ∈ C.

Example 1.3. For n = 0 and n = 1, Proposition 1.2 yields the asymptotic:

ζE(z, q) =
1

2
q−z +

1

4
zq−z−1 +O

(
1

qz+3

)
,

ζE(z, q) =
1

2
q−z +

1

4
zq−z−1 − 1

48
z(z + 1)(z + 2)q−z−3 +O

(
1

qz+5

)
.

From this, we immediately get ζE(0, q) =
1
2 .

Now we using the similar method in [10, pp. 348–349, (6)–(17)].
By Proposition 1.1, we arrive to the following expression for the first derivative

ζ ′E(z, q) = −1

2
q−z log q + I−z(q), (7)

where

I−z(q) = 2

∫ ∞

0

(q2 + t2)−
z
2 cos

(
z tan−1

(
t

q

))
tan−1

(
t

q

)
eπtdt

e2πt − 1

−
∫ ∞

0

(q2 + t2)−
z
2 sin

(
z tan−1

(
t

q

))
log(q2 + t2)

eπtdt

e2πt − 1

(8)

(cf. [10, (8)]).

Theorem 1.4. For m = 0, 1, 2, . . . , we have the following asymptotic expansion

ζ ′E(−m, q) ∼ −1

2
qm log q +

1

4
(1 +m log q)qm−1 −

∞∑
k=1

a2k(m)q−(2k−m+1),

which is valid for large |q| and | arg q| ≤ π − δ < π with any fixed 0 < δ ≤ π,
where the coefficients a2k(m) are given by

a2k(m) =


1
2E2k+1(0)

((
m

2k+1

)
log q +

2k∑
h=0

(
m
h

) (−1)h

2k−h+1

)
, 2k ≤ m− 1,

1
2E2k+1(0)

m∑
h=0

(
m
h

) (−1)h

2k−h+1 , 2k ≥ m.
(9)

Example 1.5. The formula (9) gives a closed form evaluation of the coefficients
a2k(m) in terms of the numbers E2k+1(0). For k = 1, 2, 3, . . . , the first few values
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are

a2k(0) =
1

2
E2k+1(0)

1

2k + 1
,

a2k(1) =
1

2
E2k+1(0)

(
1

2k + 1
− 1

2k

)
,

a2k(2) =
1

2
E2k+1(0)

(
1

2k + 1
− 2

1

2k
+

1

2k − 1

)
.

Therefore we obtain

ζ ′E(0, q) ∼ −1

2
log q +

1

4
q−1 − 1

2

∞∑
k=1

E2k+1(0)

2k + 1
q−(2k+1), (10)

ζ ′E(−1, q) ∼ 1

4
+

1

4
log q − 1

2
q log q +

1

2

∞∑
k=1

E2k+1(0)

(2k + 1)2k
q−2k, (11)

and

ζ ′E(−2, q) ∼
(
1

2
log q +

1

4

)
q− 1

2
q2 log q−

∞∑
k=1

E2k+1(0)

(2k + 1)2k(2k − 1)
q−(2k−1). (12)

In a similar way, we can derive the expansion for the coefficients a2k(3) :

a2k(3) =


1
2E2k+1(0)

((
3

2k+1

)
log q +

2k∑
h=0

(
3
h

) (−1)h

2k−h+1

)
, 2k ≤ 2,

1
2E2k+1(0)

3∑
h=0

(
3
h

) (−1)h

2k−h+1 , 2k ≥ 3.

(13)

Setting k = 1, we have

a2(3) =
1

8
log q +

11

48
, (14)

since E3(0) =
1
4 . And for k = 2, 3, 4, . . . , we get

a2k(3) = − 3E2k+1(0)

(2k + 1)2k(2k − 1)(2k − 2)
. (15)

Then substituting these two expressions into Theorem 1.4 with m = 3, we get
that

ζ ′E(−3, q) ∼ −
(
11

48
+

1

8
log q

)
+

1

4
(1 + 3 log q)q2 − 1

2
q3 log q

+

∞∑
k=2

3E2k+1(0)

(2k + 1)2k(2k − 1)(2k − 2)
q−(2k−2).

(16)

Similarly, we also have

ζ ′E(−4, q) ∼ −
(
13

24
+

1

2
log q

)
q +

1

4
(1 + 4 log q)q3 − 1

2
q4 log q

−
∞∑
k=2

12E2k+1(0)

(2k + 1)2k(2k − 1)(2k − 2)(2k − 3)
q−(2k−3).

(17)
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In what follows, we will use the usual convention that an empty sum is taken
to be zero. Applying different methods with [17, p. 41, (3.8)], by Proposition
1.1 with z = −m for m = 0, 1, 2, . . . , we get the following proposition.

Proposition 1.6. For m = 0, 1, 2, . . . , we have

ζE(−m, q) =
1

2
qm +

1

2

⌊m−1
2 ⌋∑

k=0

(
m

2k + 1

)
qm−2k−1E2k+1(0),

where Ek(x) denotes the k-th Euler polynomials and ⌊·⌋ denotes the floor func-
tion. This implies ζE(−m, q) = 1

2Em(q). In particular, when m = 0, we obtain

ζE(0, q) =
1
2 .

2. Main results

First, we go to the proof Proposition 1.2.

Proof of Proposition 1.2. We rewrite Proposition 1.1 in an equivalent form
as (see [17, p. 40, (3.1)])

ζE(z, q) =
1

Γ(z)

∫ ∞

0

e(1−q)ttz−1

1 + et
dt. (18)

And by noticing that

1

1 + et
=

1

2

N∑
k=0

Ek(0)

k!
tk +O(tN+1), (19)

we get the following integral representation

ζE(z, q + 1) =
1

Γ(z)

∫ ∞

0

e−qttz−1

(
1

1 + et
− 1

2

N∑
k=0

Ek(0)

k!
tk

)
dt

+
1

2Γ(z)

N∑
k=0

Ek(0)

k!

∫ ∞

0

e−qttk+z−1dt.

(20)

Since the term in the bracket equals to O(tN+1) as t → 0, the above integral
yields a function which is analytic for Re(z) > −N − 1. Evaluating the second
integral and making use of the functional equation for ζE(z, q)

ζE(z, q + 1) + ζE(z, q) =
1

qz
, Re(q) > 0,

we obtain an asymptotic expansion at infinity

ζE(z, q) =
1

2
q−z − 1

2

N∑
k=1

Ek(0)Γ(k + z)

k!Γ(z)
q−k−z +O

(
1

qN+z+1

)
, (21)
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where Re(q) > 0. By noticing that E0(0) = 1 and E2k(0) = 0 for k = 1, 2, 3, . . . ,
(21) can also be written in an equivalent form

ζE(z, q) =
1

2
q−z− 1

2

n∑
k=0

E2k+1(0)Γ(2k + z + 1)

(2k + 1)!Γ(z)
q−2k−z−1+O

(
1

q2n+z+3

)
, (22)

for n = 0, 1, 2, . . . . This completes the proof. □

Proof of Theorem 1.4. The proof of Theorem 1.4 is based on the following
two lemmas.

Lemma 2.1 ([10, p. 348, (9)]). We have

tan−1

(
t

q

)
=

∞∑
h=0

(−1)h

2h+ 1

(
t

q

)2h+1

,

log(q2 + t2) = 2 log q +

∞∑
h=1

(−1)h−1

h

(
t

q

)2h

.

Lemma 2.2. For all m = 0, 1, 2, . . . , we have

Im(q) =
1

4
(1 +m log q)qm−1 −

∞∑
k=1

a2k(m)q−(2k−m+1),

where a2k(m) is defined in (9).

Proof. From Euler’s formula, a nonzero complex number z = q+it can be broken
down into

zm = (q + it)m

=
(√

q2 + t2ei tan
−1( t

q )
)m

= (q2 + t2)
m
2

(
cos

(
m tan−1

(
t

q

))
+ i sin

(
m tan−1

(
t

q

)))
,

(23)

where m ≥ 0. Thus, we may write

Re

((
tan−1

(
t

q

)
− i

2
log(q2 + t2)

)
(q + it)m

)
= (q2 + t2)

m
2 cos

(
m tan−1

(
t

q

))
tan−1

(
t

q

)
+

1

2
(q2 + t2)

m
2 sin

(
m tan−1

(
t

q

))
log(q2 + t2).

(24)

Recall Riemann’s integral (see [6, p. 251, Theorem 12.2])

Γ(z)ζ(z, q) =

∫ ∞

0

tz−1e(1−q)t

et − 1
dt, Re(z) > 1, (25)
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which enables ζ(z, q) to be analytically continued to the whole complex plane
except for a simple pole at z = 1 with residue 1. If setting z = ℓ+ 1, q = 1

2 and
letting t → 2πt in (25), then we have

∫ ∞

0

tℓeπt

e2πt − 1
dt =

∫ ∞

0

(
t
2π

)ℓ
e

t
2

et − 1

(
1

2π

)
dt

=

(
1

2π

)ℓ+1 ∫ ∞

0

tℓe
t
2

et − 1
dt

=

(
1

2π

)ℓ+1

Γ(ℓ+ 1)ζ

(
ℓ+ 1,

1

2

)
.

(26)

In what follows, we shall prove asymptotic expansions for the integrals on the
right hand side of (8). Firstly we immediately see from (8) with z = −m and
(24) that

Im(q) = 2Re

∫ ∞

0

(
tan−1

(
t

q

)
− i

2
log(q2 + t2)

)
(q + it)m

eπtdt

e2πt − 1
. (27)

And by using Lemma 2.1 and expanding (q+it)m by the binomials, (27) becomes
to

Im(q) = 2Re

∫ ∞

0

(
m∑

k=0

∞∑
h=0

(−1)hq−2h−1

2h+ 1

(
m

k

)
qm−kiktk+2h+1

−
m∑

k=0

(
m

k

)
qm−kik+1tk log q

−1

2

m∑
k=0

∞∑
h=1

(
m

k

)
(−1)h−1ik+1

h
qm−k−2htk+2h

)
eπtdt

e2πt − 1

= 2Re

(
m∑

k=0

∞∑
h=0

(−1)hq−2h−1

2h+ 1

(
m

k

)
qm−kik

(
1

2π

)k+2h+2

× Γ(k + 2h+ 2)ζ

(
k + 2h+ 2,

1

2

)
−

m∑
k=0

(
m

k

)
qm−kik+1

(
1

2π

)k+1

Γ(k + 1)ζ

(
k + 1,

1

2

)
log q

− 1

2

m∑
k=0

∞∑
h=1

(
m

k

)
(−1)h−1ik+1

h
qm−k−2h

(
1

2π

)k+2h+1

×Γ(k + 2h+ 1)ζ

(
k + 2h+ 1,

1

2

))
,

(28)
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in which the last equality follows from (26). Then by applying an elementary
calculation procedure for the expression on the right side of (28), we have

Im(q) = 2

m∑
k=0

k even

∞∑
h=0

(
m

k

)
(−1)hik

2h+ 1

qm−k−2h−1

(2π)2h+k+2
(2h+ k + 1)!ζ

(
2h+ k + 2,

1

2

)

− 2

m∑
k=0
k odd

(
m

k

)
ik+1 q

m−k log q

(2π)k+1
k!ζ

(
k + 1,

1

2

)

−
m∑

k=0
k odd

∞∑
h=1

(
m

k

)
(−1)h−1ik+1

h

qm−k−2h

(2π)2h+k+1
(2h+ k)!ζ

(
2h+ k + 1,

1

2

)
.

(29)
Now recall the following Euler’s formula for ζ(2k) (see [6, p. 266, Theorem
12.17])

ζ

(
2k,

1

2

)
= (22k − 1)ζ(2k)

= (22k − 1)(−1)k+1 (2π)
2k

2(2k)!
B2k

= (−1)k
k(2π)2k

2(2k)!
E2k−1(0),

(30)

where k = 1, 2, 3, . . . , and the third equality following from [16, Corollary 3.2]

(2m − 1)Bm = −m

2
Em−1(0), m = 1, 2, 3, . . . . (31)

Then combining (29) with (30), we obtain

Im(q) = −1

2

m∑
k=0

k even

∞∑
h=0

(
m

k

)
1

2h+ 1
E2h+k+1(0)q

−(2h+k−m+1)

− 1

2

m∑
k=0
k odd

(
m

k

)
Ek(0)q

−(k−m) log q

+
1

2

m∑
k=0
k odd

∞∑
h=1

(
m

k

)
1

2h
E2h+k(0)q

−(2h+k−m).

(32)

Finally, after some calculation, (32) becomes to

Im(q) =
1

4
(1 +m log q)q−(1−m) −

∞∑
k=1

a2k(m)q−(2k−m+1), (33)



An Asymptotic expansion for the first Derivative of the Hurwitz-type Euler zeta function 1417

where the coefficients a2k(m) are given by

a2k(m) =


1
2E2k+1(0)

((
m

2k+1

)
log q +

2k∑
h=0

(
m
h

) (−1)h

2k−h+1

)
, 2k ≤ m− 1,

1
2E2k+1(0)

m∑
h=0

(
m
h

) (−1)h

2k−h+1 , 2k ≥ m,

and En(x) are the Euler polynomials. This completes the proof. □

Finally, by (7) with z = −m and Lemma 2.2, we get Theorem 1.4.

Proof of Proposition 1.6. For m = 0, 1, 2, . . . , if setting z = −m in Proposi-
tion 1.1 and use (23), then we easily get that

ζE(−m, q) =
1

2
qm − 2Im

∫ ∞

0

(q + it)m
eπtdt

e2πt − 1
. (34)

On the right hand side of (34), an application of the binomial identity yields

2Im

∫ ∞

0

(q + it)m
eπtdt

e2πt − 1
= 2

m∑
k=0
k odd

(
m

k

)
qm−k(−1)

k−1
2

∫ ∞

0

tkeπtdt

e2πt − 1
. (35)

Combining (26), (30), (31), (34), and (35), we obtain

ζE(−m, q) =
1

2
qm − 2

m∑
k=0
k odd

(
m

k

)
qm−k(−1)

k−1
2

(
1

2π

)k+1

× k!(2k+1 − 1)ζ(k + 1)

=
1

2
qm −

⌊m−1
2 ⌋∑

k=0

(
m

2k + 1

)
qm−2k−1(22k+2 − 1)

B2k+2

2k + 2

=
1

2
qm +

1

2

⌊m−1
2 ⌋∑

k=0

(
m

2k + 1

)
qm−2k−1E2k+1(0),

(36)

where ⌊·⌋ denotes the floor function, and the proposition by noticing E2k(0) = 0
for k = 1, 2, 3, . . . .
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