AN ASYMPTOTIC EXPANSION FOR THE FIRST DERIVATIVE OF THE HURWITZ-TYPE EULER ZETA FUNCTION ${ }^{\dagger}$

MIN-SOO KIM

Abstract. The Hurwitz-type Euler zeta function $\zeta_{E}(z, q)$ is defined by the series

$$
\zeta_{E}(z, q)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+q)^{z}}
$$

for $\operatorname{Re}(z)>0$ and $q \neq 0,-1,-2, \ldots$, and it can be analytic continued to the whole complex plane. An asymptotic expansion for $\zeta_{E}^{\prime}(-m, q)$ has been proved based on the calculation of Hermite's integral representation for $\zeta_{E}(z, q)$.

AMS Mathematics Subject Classification : 11M35, 33F05.
Key words and phrases : Asymptotic expansions, alternating Hurwitz zeta functions, Hermite's integral representation.

1. Introduction

Elizalde [10] gave an asymptotic expansion for the first derivative

$$
\begin{equation*}
\left.\zeta^{\prime}(-n, q) \equiv \frac{\partial}{\partial z} \zeta(z, q)\right|_{z=-n}, \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

of the Hurwitz zeta function

$$
\begin{equation*}
\zeta(z, q)=\sum_{n=0}^{\infty} \frac{1}{(n+q)^{z}}, \quad \operatorname{Re}(z)>1, q \neq 0,-1,-2, \ldots \tag{2}
\end{equation*}
$$

in inverse powers of q. The procedure employed is similar to the standard method: Watson's Lemma and Laplace's method. The Hurwitz zeta function $\zeta(z, q)$ admits an analytic continuation to the entire complex plane except for the simple pole at $z=1$, and the Riemann zeta function $\zeta(z)$ is a special case of $\zeta(z, q)$:

$$
\zeta(z, 1)=\zeta(z)
$$

Received August 30, 2023. Revised October 17, 2023. Accepted November 6, 2023.
${ }^{\dagger}$ This work was supported by the Kyungnam University Foundation Grant, 2022.
(C) 2023 KSCAM.
(see $[6,10,17]$).
The first order derivative of $\zeta(z, q)$ for z has also been linked to some integrals involving cyclotomic polynomials and iterated logarithms in [2], polygamma functions of negative order in [3], the multiple gamma functions in $[4,5,7]$, and a log-gamma integral in [8] and [11]. In [15], Seri obtained an asymptotic formula for higher derivatives of the Hurwitz zeta function $\zeta(z, q)$ with respect to its first argument as $\zeta^{(m)}(z, q)=\partial^{m} \zeta(z, q) / \partial z^{m}$.

The Hurwitz-type Euler zeta function (or, equivalently, the alternating Hurwitz zeta function) is defined by the series (see [17, p. 37, (2.2)] and [9, p. 514, (3.1)])

$$
\begin{equation*}
\zeta_{E}(z, q)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+q)^{z}} \tag{3}
\end{equation*}
$$

where $\operatorname{Re}(z)>0$ and $q \neq 0,-1,-2, \ldots$ (cf. [14, p. 308, (3.4)]). It can be analytic continue as an entire function in the complex plane. The Dirichlet eta function (or, the alternating Riemann zeta function) $\eta(z)$ is a special case of $\zeta_{E}(z, q)$:

$$
\begin{equation*}
\zeta_{E}(z, 1)=\eta(z)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{z}} \tag{4}
\end{equation*}
$$

where $\operatorname{Re}(z)>0$ (see $[9$, p. $514,(3.2)])$. As in [10], we denote by

$$
\begin{equation*}
\zeta_{E}^{\prime}(z, q) \equiv \frac{\partial}{\partial z} \zeta_{E}(z, q) \tag{5}
\end{equation*}
$$

In this note, we shall prove an asymptotic expansion for $\zeta^{\prime}(-m, q)$ based on the following calculation of Hermite's integral representation for $\zeta_{E}(z, q)$.

Proposition 1.1 ([17, p. 38, Proposition 1]). For all z and $\operatorname{Re}(q)>0$

$$
\zeta_{E}(z, q)=\frac{1}{2} q^{-z}+2 \int_{0}^{\infty}\left(q^{2}+t^{2}\right)^{-z / 2} \sin \left[z \tan ^{-1}\left(\frac{t}{q}\right)\right] \frac{e^{\pi t} d t}{e^{2 \pi t}-1}
$$

Remark 1.1. This expression exhibits the non-singularity structure of $\zeta_{E}(z, q)$ (and $J(z, q)$ in Williams and Zhang's [17] notation) explicitly, since the integral inside can be analytic continued to all complex numbers $z \in \mathbb{C}$ due to it uniformly convergents for $|z|<R$ with $R>0$.

Proposition 1.2. For $n=0,1,2, \ldots$, we have an asymptotic expansion

$$
\zeta_{E}(z, q)=\frac{1}{2} q^{-z}-\frac{1}{2} \sum_{k=0}^{n} \frac{E_{2 k+1}(0) \Gamma(2 k+z+1)}{(2 k+1)!\Gamma(z)} q^{-2 k-z-1}+O\left(\frac{1}{q^{2 n+z+3}}\right)
$$

for $|q|$ tending to ∞, where the gamma function $\Gamma(z)$ is defined by the following Mellin integral

$$
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t
$$

and $E_{n}(x)$ are the Euler polynomials defined by the generating function

$$
\begin{equation*}
\frac{2 e^{x t}}{e^{t}+1}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!} \tag{6}
\end{equation*}
$$

Remark 1.2. This formula was studied by Hu and Kim in [12] from a different method. In particular, Hu and Kim [12] has derived the asymptotic expansions for higher order derivatives $\left(\frac{\partial}{\partial z}\right)^{m} \zeta_{E}(z, q)$, where $|q| \rightarrow \infty$ and $z \in \mathbb{C}$.

Example 1.3. For $n=0$ and $n=1$, Proposition 1.2 yields the asymptotic:

$$
\begin{aligned}
& \zeta_{E}(z, q)=\frac{1}{2} q^{-z}+\frac{1}{4} z q^{-z-1}+O\left(\frac{1}{q^{z+3}}\right), \\
& \zeta_{E}(z, q)=\frac{1}{2} q^{-z}+\frac{1}{4} z q^{-z-1}-\frac{1}{48} z(z+1)(z+2) q^{-z-3}+O\left(\frac{1}{q^{z+5}}\right) .
\end{aligned}
$$

From this, we immediately get $\zeta_{E}(0, q)=\frac{1}{2}$.
Now we using the similar method in [10, pp. 348-349, (6)-(17)].
By Proposition 1.1, we arrive to the following expression for the first derivative

$$
\begin{equation*}
\zeta_{E}^{\prime}(z, q)=-\frac{1}{2} q^{-z} \log q+I_{-z}(q) \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
I_{-z}(q)= & 2 \int_{0}^{\infty}\left(q^{2}+t^{2}\right)^{-\frac{z}{2}} \cos \left(z \tan ^{-1}\left(\frac{t}{q}\right)\right) \tan ^{-1}\left(\frac{t}{q}\right) \frac{e^{\pi t} d t}{e^{2 \pi t}-1} \\
& -\int_{0}^{\infty}\left(q^{2}+t^{2}\right)^{-\frac{z}{2}} \sin \left(z \tan ^{-1}\left(\frac{t}{q}\right)\right) \log \left(q^{2}+t^{2}\right) \frac{e^{\pi t} d t}{e^{2 \pi t}-1} \tag{8}
\end{align*}
$$

(cf. [10, (8)]).
Theorem 1.4. For $m=0,1,2, \ldots$, we have the following asymptotic expansion

$$
\zeta_{E}^{\prime}(-m, q) \sim-\frac{1}{2} q^{m} \log q+\frac{1}{4}(1+m \log q) q^{m-1}-\sum_{k=1}^{\infty} a_{2 k}(m) q^{-(2 k-m+1)}
$$

which is valid for large $|q|$ and $|\arg q| \leq \pi-\delta<\pi$ with any fixed $0<\delta \leq \pi$, where the coefficients $a_{2 k}(m)$ are given by

$$
a_{2 k}(m)= \begin{cases}\left.\frac{1}{2} E_{2 k+1}(0)\binom{m}{2 k+1} \log q+\sum_{h=0}^{2 k}\binom{m}{h} \frac{(-1)^{h}}{2 k-h+1}\right), & 2 k \leq m-1 \tag{9}\\ \frac{1}{2} E_{2 k+1}(0) \sum_{h=0}^{m}\binom{m}{h} \frac{(-1)^{h}}{2 k-h+1}, & 2 k \geq m\end{cases}
$$

Example 1.5. The formula (9) gives a closed form evaluation of the coefficients $a_{2 k}(m)$ in terms of the numbers $E_{2 k+1}(0)$. For $k=1,2,3, \ldots$, the first few values
are

$$
\begin{aligned}
& a_{2 k}(0)=\frac{1}{2} E_{2 k+1}(0) \frac{1}{2 k+1} \\
& a_{2 k}(1)=\frac{1}{2} E_{2 k+1}(0)\left(\frac{1}{2 k+1}-\frac{1}{2 k}\right), \\
& a_{2 k}(2)=\frac{1}{2} E_{2 k+1}(0)\left(\frac{1}{2 k+1}-2 \frac{1}{2 k}+\frac{1}{2 k-1}\right) .
\end{aligned}
$$

Therefore we obtain

$$
\begin{align*}
& \zeta_{E}^{\prime}(0, q) \sim-\frac{1}{2} \log q+\frac{1}{4} q^{-1}-\frac{1}{2} \sum_{k=1}^{\infty} \frac{E_{2 k+1}(0)}{2 k+1} q^{-(2 k+1)} \tag{10}\\
& \zeta_{E}^{\prime}(-1, q) \sim \frac{1}{4}+\frac{1}{4} \log q-\frac{1}{2} q \log q+\frac{1}{2} \sum_{k=1}^{\infty} \frac{E_{2 k+1}(0)}{(2 k+1) 2 k} q^{-2 k} \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
\zeta_{E}^{\prime}(-2, q) \sim\left(\frac{1}{2} \log q+\frac{1}{4}\right) q-\frac{1}{2} q^{2} \log q-\sum_{k=1}^{\infty} \frac{E_{2 k+1}(0)}{(2 k+1) 2 k(2 k-1)} q^{-(2 k-1)} \tag{12}
\end{equation*}
$$

In a similar way, we can derive the expansion for the coefficients $a_{2 k}(3)$:

$$
a_{2 k}(3)= \begin{cases}\frac{1}{2} E_{2 k+1}(0)\left(\binom{3}{2 k+1} \log q+\sum_{h=0}^{2 k}\binom{3}{h} \frac{(-1)^{h}}{2 k-h+1}\right), & 2 k \leq 2 \tag{13}\\ \frac{1}{2} E_{2 k+1}(0) \sum_{h=0}^{3}\binom{3}{h} \frac{(-1)^{h}}{2 k-h+1}, & 2 k \geq 3\end{cases}
$$

Setting $k=1$, we have

$$
\begin{equation*}
a_{2}(3)=\frac{1}{8} \log q+\frac{11}{48} \tag{14}
\end{equation*}
$$

since $E_{3}(0)=\frac{1}{4}$. And for $k=2,3,4, \ldots$, we get

$$
\begin{equation*}
a_{2 k}(3)=-\frac{3 E_{2 k+1}(0)}{(2 k+1) 2 k(2 k-1)(2 k-2)} . \tag{15}
\end{equation*}
$$

Then substituting these two expressions into Theorem 1.4 with $m=3$, we get that

$$
\begin{align*}
\zeta_{E}^{\prime}(-3, q) \sim & -\left(\frac{11}{48}+\frac{1}{8} \log q\right)+\frac{1}{4}(1+3 \log q) q^{2}-\frac{1}{2} q^{3} \log q \\
& +\sum_{k=2}^{\infty} \frac{3 E_{2 k+1}(0)}{(2 k+1) 2 k(2 k-1)(2 k-2)} q^{-(2 k-2)} \tag{16}
\end{align*}
$$

Similarly, we also have

$$
\begin{align*}
\zeta_{E}^{\prime}(-4, q) \sim & -\left(\frac{13}{24}+\frac{1}{2} \log q\right) q+\frac{1}{4}(1+4 \log q) q^{3}-\frac{1}{2} q^{4} \log q \\
& -\sum_{k=2}^{\infty} \frac{12 E_{2 k+1}(0)}{(2 k+1) 2 k(2 k-1)(2 k-2)(2 k-3)} q^{-(2 k-3)} \tag{17}
\end{align*}
$$

In what follows, we will use the usual convention that an empty sum is taken to be zero. Applying different methods with [17, p. 41, (3.8)], by Proposition 1.1 with $z=-m$ for $m=0,1,2, \ldots$, we get the following proposition.

Proposition 1.6. For $m=0,1,2, \ldots$, we have

$$
\zeta_{E}(-m, q)=\frac{1}{2} q^{m}+\frac{1}{2} \sum_{k=0}^{\left\lfloor\frac{m-1}{2}\right\rfloor}\binom{m}{2 k+1} q^{m-2 k-1} E_{2 k+1}(0)
$$

where $E_{k}(x)$ denotes the k-th Euler polynomials and $\lfloor\cdot\rfloor$ denotes the floor function. This implies $\zeta_{E}(-m, q)=\frac{1}{2} E_{m}(q)$. In particular, when $m=0$, we obtain $\zeta_{E}(0, q)=\frac{1}{2}$.

2. Main results

First, we go to the proof Proposition 1.2.
Proof of Proposition 1.2. We rewrite Proposition 1.1 in an equivalent form as (see [17, p. 40, (3.1)])

$$
\begin{equation*}
\zeta_{E}(z, q)=\frac{1}{\Gamma(z)} \int_{0}^{\infty} \frac{e^{(1-q) t} t^{z-1}}{1+e^{t}} d t \tag{18}
\end{equation*}
$$

And by noticing that

$$
\begin{equation*}
\frac{1}{1+e^{t}}=\frac{1}{2} \sum_{k=0}^{N} \frac{E_{k}(0)}{k!} t^{k}+O\left(t^{N+1}\right) \tag{19}
\end{equation*}
$$

we get the following integral representation

$$
\begin{align*}
\zeta_{E}(z, q+1)= & \frac{1}{\Gamma(z)} \int_{0}^{\infty} e^{-q t} t^{z-1}\left(\frac{1}{1+e^{t}}-\frac{1}{2} \sum_{k=0}^{N} \frac{E_{k}(0)}{k!} t^{k}\right) d t \\
& +\frac{1}{2 \Gamma(z)} \sum_{k=0}^{N} \frac{E_{k}(0)}{k!} \int_{0}^{\infty} e^{-q t} t^{k+z-1} d t \tag{20}
\end{align*}
$$

Since the term in the bracket equals to $O\left(t^{N+1}\right)$ as $t \rightarrow 0$, the above integral yields a function which is analytic for $\operatorname{Re}(z)>-N-1$. Evaluating the second integral and making use of the functional equation for $\zeta_{E}(z, q)$

$$
\zeta_{E}(z, q+1)+\zeta_{E}(z, q)=\frac{1}{q^{z}}, \quad \operatorname{Re}(q)>0
$$

we obtain an asymptotic expansion at infinity

$$
\begin{equation*}
\zeta_{E}(z, q)=\frac{1}{2} q^{-z}-\frac{1}{2} \sum_{k=1}^{N} \frac{E_{k}(0) \Gamma(k+z)}{k!\Gamma(z)} q^{-k-z}+O\left(\frac{1}{q^{N+z+1}}\right) \tag{21}
\end{equation*}
$$

where $\operatorname{Re}(q)>0$. By noticing that $E_{0}(0)=1$ and $E_{2 k}(0)=0$ for $k=1,2,3, \ldots$, (21) can also be written in an equivalent form

$$
\begin{equation*}
\zeta_{E}(z, q)=\frac{1}{2} q^{-z}-\frac{1}{2} \sum_{k=0}^{n} \frac{E_{2 k+1}(0) \Gamma(2 k+z+1)}{(2 k+1)!\Gamma(z)} q^{-2 k-z-1}+O\left(\frac{1}{q^{2 n+z+3}}\right) \tag{22}
\end{equation*}
$$

for $n=0,1,2, \ldots$ This completes the proof.
Proof of Theorem 1.4. The proof of Theorem 1.4 is based on the following two lemmas.

Lemma 2.1 ([10, p. 348, (9)]). We have

$$
\begin{aligned}
\tan ^{-1}\left(\frac{t}{q}\right) & =\sum_{h=0}^{\infty} \frac{(-1)^{h}}{2 h+1}\left(\frac{t}{q}\right)^{2 h+1} \\
\log \left(q^{2}+t^{2}\right) & =2 \log q+\sum_{h=1}^{\infty} \frac{(-1)^{h-1}}{h}\left(\frac{t}{q}\right)^{2 h}
\end{aligned}
$$

Lemma 2.2. For all $m=0,1,2, \ldots$, we have

$$
I_{m}(q)=\frac{1}{4}(1+m \log q) q^{m-1}-\sum_{k=1}^{\infty} a_{2 k}(m) q^{-(2 k-m+1)}
$$

where $a_{2 k}(m)$ is defined in (9).
Proof. From Euler's formula, a nonzero complex number $z=q+i t$ can be broken down into

$$
\begin{align*}
z^{m} & =(q+i t)^{m} \\
& =\left(\sqrt{q^{2}+t^{2}} e^{i \tan ^{-1}\left(\frac{t}{q}\right)}\right)^{m} \tag{23}\\
& =\left(q^{2}+t^{2}\right)^{\frac{m}{2}}\left(\cos \left(m \tan ^{-1}\left(\frac{t}{q}\right)\right)+i \sin \left(m \tan ^{-1}\left(\frac{t}{q}\right)\right)\right)
\end{align*}
$$

where $m \geq 0$. Thus, we may write

$$
\begin{align*}
\operatorname{Re}\left(\left(\tan ^{-1}\right.\right. & \left.\left.\left(\frac{t}{q}\right)-\frac{i}{2} \log \left(q^{2}+t^{2}\right)\right)(q+i t)^{m}\right) \\
= & \left(q^{2}+t^{2}\right)^{\frac{m}{2}} \cos \left(m \tan ^{-1}\left(\frac{t}{q}\right)\right) \tan ^{-1}\left(\frac{t}{q}\right) \tag{24}\\
& +\frac{1}{2}\left(q^{2}+t^{2}\right)^{\frac{m}{2}} \sin \left(m \tan ^{-1}\left(\frac{t}{q}\right)\right) \log \left(q^{2}+t^{2}\right)
\end{align*}
$$

Recall Riemann's integral (see [6, p. 251, Theorem 12.2])

$$
\begin{equation*}
\Gamma(z) \zeta(z, q)=\int_{0}^{\infty} \frac{t^{z-1} e^{(1-q) t}}{e^{t}-1} d t, \quad \operatorname{Re}(z)>1 \tag{25}
\end{equation*}
$$

which enables $\zeta(z, q)$ to be analytically continued to the whole complex plane except for a simple pole at $z=1$ with residue 1 . If setting $z=\ell+1, q=\frac{1}{2}$ and letting $t \rightarrow 2 \pi t$ in (25), then we have

$$
\begin{align*}
\int_{0}^{\infty} \frac{t^{\ell} e^{\pi t}}{e^{2 \pi t}-1} d t & =\int_{0}^{\infty} \frac{\left(\frac{t}{2 \pi}\right)^{\ell} e^{\frac{t}{2}}}{e^{t}-1}\left(\frac{1}{2 \pi}\right) d t \\
& =\left(\frac{1}{2 \pi}\right)^{\ell+1} \int_{0}^{\infty} \frac{t^{\ell} e^{\frac{t}{2}}}{e^{t}-1} d t \tag{26}\\
& =\left(\frac{1}{2 \pi}\right)^{\ell+1} \Gamma(\ell+1) \zeta\left(\ell+1, \frac{1}{2}\right)
\end{align*}
$$

In what follows, we shall prove asymptotic expansions for the integrals on the right hand side of (8). Firstly we immediately see from (8) with $z=-m$ and (24) that

$$
\begin{equation*}
I_{m}(q)=2 \operatorname{Re} \int_{0}^{\infty}\left(\tan ^{-1}\left(\frac{t}{q}\right)-\frac{i}{2} \log \left(q^{2}+t^{2}\right)\right)(q+i t)^{m} \frac{e^{\pi t} d t}{e^{2 \pi t}-1} \tag{27}
\end{equation*}
$$

And by using Lemma 2.1 and expanding $(q+i t)^{m}$ by the binomials, (27) becomes to

$$
\begin{align*}
I_{m}(q)= & 2 \operatorname{Re} \int_{0}^{\infty}\left(\sum_{k=0}^{m} \sum_{h=0}^{\infty} \frac{(-1)^{h} q^{-2 h-1}}{2 h+1}\binom{m}{k} q^{m-k} i^{k} t^{k+2 h+1}\right. \\
- & \sum_{k=0}^{m}\binom{m}{k} q^{m-k} i^{k+1} t^{k} \log q \\
- & \left.\frac{1}{2} \sum_{k=0}^{m} \sum_{h=1}^{\infty}\binom{m}{k} \frac{(-1)^{h-1} i^{k+1}}{h} q^{m-k-2 h} t^{k+2 h}\right) \frac{e^{\pi t} d t}{e^{2 \pi t}-1} \\
= & 2 \operatorname{Re}\left(\sum_{k=0}^{m} \sum_{h=0}^{\infty} \frac{(-1)^{h} q^{-2 h-1}}{2 h+1}\binom{m}{k} q^{m-k} i^{k}\left(\frac{1}{2 \pi}\right)^{k+2 h+2}\right. \tag{28}\\
& \times \Gamma(k+2 h+2) \zeta\left(k+2 h+2, \frac{1}{2}\right) \\
- & \sum_{k=0}^{m}\binom{m}{k} q^{m-k} i^{k+1}\left(\frac{1}{2 \pi}\right)^{k+1} \Gamma(k+1) \zeta\left(k+1, \frac{1}{2}\right) \log q \\
- & \frac{1}{2} \sum_{k=0}^{m} \sum_{h=1}^{\infty}\binom{m}{k} \frac{(-1)^{h-1} i^{k+1}}{h} q^{m-k-2 h}\left(\frac{1}{2 \pi}\right)^{k+2 h+1} \\
& \left.\times \Gamma(k+2 h+1) \zeta\left(k+2 h+1, \frac{1}{2}\right)\right)
\end{align*}
$$

in which the last equality follows from (26). Then by applying an elementary calculation procedure for the expression on the right side of (28), we have

$$
\begin{align*}
I_{m}(q)= & 2 \sum_{\substack{k=0 \\
k \text { even }}}^{m} \sum_{h=0}^{\infty}\binom{m}{k} \frac{(-1)^{h} i^{k}}{2 h+1} \frac{q^{m-k-2 h-1}}{(2 \pi)^{2 h+k+2}}(2 h+k+1)!\zeta\left(2 h+k+2, \frac{1}{2}\right) \\
& -2 \sum_{\substack{k=0 \\
k \text { odd }}}^{m}\binom{m}{k} i^{k+1} \frac{q^{m-k} \log q}{(2 \pi)^{k+1}} k!\zeta\left(k+1, \frac{1}{2}\right) \\
& -\sum_{\substack{k=0 \\
k \text { odd }}}^{m} \sum_{h=1}^{\infty}\binom{m}{k} \frac{(-1)^{h-1} i^{k+1}}{h} \frac{q^{m-k-2 h}}{(2 \pi)^{2 h+k+1}}(2 h+k)!\zeta\left(2 h+k+1, \frac{1}{2}\right) . \tag{29}
\end{align*}
$$

Now recall the following Euler's formula for $\zeta(2 k)$ (see [6, p. 266, Theorem 12.17])

$$
\begin{align*}
\zeta\left(2 k, \frac{1}{2}\right) & =\left(2^{2 k}-1\right) \zeta(2 k) \\
& =\left(2^{2 k}-1\right)(-1)^{k+1} \frac{(2 \pi)^{2 k}}{2(2 k)!} B_{2 k} \tag{30}\\
& =(-1)^{k} \frac{k(2 \pi)^{2 k}}{2(2 k)!} E_{2 k-1}(0)
\end{align*}
$$

where $k=1,2,3, \ldots$, and the third equality following from [16, Corollary 3.2]

$$
\begin{equation*}
\left(2^{m}-1\right) B_{m}=-\frac{m}{2} E_{m-1}(0), \quad m=1,2,3, \ldots \tag{31}
\end{equation*}
$$

Then combining (29) with (30), we obtain

$$
\begin{align*}
I_{m}(q)= & -\frac{1}{2} \sum_{\substack{k=0 \\
k \text { even }}}^{m} \sum_{h=0}^{\infty}\binom{m}{k} \frac{1}{2 h+1} E_{2 h+k+1}(0) q^{-(2 h+k-m+1)} \\
& -\frac{1}{2} \sum_{\substack{k=0 \\
k \text { odd }}}^{m}\binom{m}{k} E_{k}(0) q^{-(k-m)} \log q \tag{32}\\
& +\frac{1}{2} \sum_{\substack{k=0 \\
k \text { odd }}}^{m} \sum_{h=1}^{\infty}\binom{m}{k} \frac{1}{2 h} E_{2 h+k}(0) q^{-(2 h+k-m)}
\end{align*}
$$

Finally, after some calculation, (32) becomes to

$$
\begin{equation*}
I_{m}(q)=\frac{1}{4}(1+m \log q) q^{-(1-m)}-\sum_{k=1}^{\infty} a_{2 k}(m) q^{-(2 k-m+1)} \tag{33}
\end{equation*}
$$

where the coefficients $a_{2 k}(m)$ are given by

$$
a_{2 k}(m)= \begin{cases}\frac{1}{2} E_{2 k+1}(0)\left(\binom{m}{2 k+1} \log q+\sum_{h=0}^{2 k}\binom{m}{h} \frac{(-1)^{h}}{2 k-h+1}\right), & 2 k \leq m-1 \\ \frac{1}{2} E_{2 k+1}(0) \sum_{h=0}^{m}\binom{m}{h} \frac{(-1)^{h}}{2 k-h+1}, & 2 k \geq m\end{cases}
$$

and $E_{n}(x)$ are the Euler polynomials. This completes the proof.

Finally, by (7) with $z=-m$ and Lemma 2.2, we get Theorem 1.4.

Proof of Proposition 1.6. For $m=0,1,2, \ldots$, if setting $z=-m$ in Proposition 1.1 and use (23), then we easily get that

$$
\begin{equation*}
\zeta_{E}(-m, q)=\frac{1}{2} q^{m}-2 \operatorname{Im} \int_{0}^{\infty}(q+i t)^{m} \frac{e^{\pi t} d t}{e^{2 \pi t}-1} \tag{34}
\end{equation*}
$$

On the right hand side of (34), an application of the binomial identity yields

$$
\begin{equation*}
2 \operatorname{Im} \int_{0}^{\infty}(q+i t)^{m} \frac{e^{\pi t} d t}{e^{2 \pi t}-1}=2 \sum_{\substack{k=0 \\ k \text { odd }}}^{m}\binom{m}{k} q^{m-k}(-1)^{\frac{k-1}{2}} \int_{0}^{\infty} \frac{t^{k} e^{\pi t} d t}{e^{2 \pi t}-1} \tag{35}
\end{equation*}
$$

Combining (26), (30), (31), (34), and (35), we obtain

$$
\begin{align*}
\zeta_{E}(-m, q)= & \frac{1}{2} q^{m}-2 \sum_{\substack{k=0 \\
k \text { odd }}}^{m}\binom{m}{k} q^{m-k}(-1)^{\frac{k-1}{2}}\left(\frac{1}{2 \pi}\right)^{k+1} \\
& \times k!\left(2^{k+1}-1\right) \zeta(k+1) \\
= & \frac{1}{2} q^{m}-\sum_{k=0}^{\left.\frac{m-1}{2}\right\rfloor}\binom{m}{2 k+1} q^{m-2 k-1}\left(2^{2 k+2}-1\right) \frac{B_{2 k+2}}{2 k+2} \tag{36}\\
= & \frac{1}{2} q^{m}+\frac{1}{2} \sum_{k=0}^{\left\lfloor\frac{m-1}{2}\right\rfloor}\binom{m}{2 k+1} q^{m-2 k-1} E_{2 k+1}(0)
\end{align*}
$$

where $\lfloor\cdot\rfloor$ denotes the floor function, and the proposition by noticing $E_{2 k}(0)=0$ for $k=1,2,3, \ldots$.

Conflicts of interest : The author declares no conflict of interest.

References

1. M. Abramowitz and I. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1972.
2. V.S. Adamchik, A class of logarithmic integrals, In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, Kihei, HI, ACM, New York, 1997, 1-8.
3. V.S. Adamchik, Polygamma functions of negative order, J. Comput. Appl. Math. 100 (1998), 191-199.
4. V.S. Adamchik, The multiple gamma function and its application to computation of series, Ramanujan J. 9 (2005), 271-288.
5. V.S. Adamchik, On the Hurwitz function for rational arguments, Appl. Math. Comput. 187 (2007), 3-12.
6. T.M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976.
7. J. Choi, Y.J. Cho and H.M. Srivastava, Series involving the zeta function and multiple gamma functions, Appl. Math. Comput. 159 (2004), 509-537.
8. J. Choi, H.M. Srivastava, A family of log-gamma integrals and associated results, J. Math. Anal. Appl. 303 (2005), 436-449.
9. J. Choi and H.M. Srivastava, The multiple Hurwitz zeta function and the multiple HurwitzEuler eta function, Taiwanese J. Math. 15 (2011), 501-522.
10. E. Elizalde, An asymptotic expansion for the first derivative of the generalized Riemann zeta function, Math. Comp. 47 (1986), 347-350.
11. E. Elizalde and A. Romeo, An integral involving the generalized zeta function, Int. J. Math. Math. Sci. 13 (1990), 453-460.
12. S. Hu and M.-S. Kim, Asymptotic expansions for the alternating Hurwitz zeta function and its derivatives, Preprint, 2023. https://arxiv.org/abs/2103.15528.
13. M.-S. Kim, Some series involving the Euler zeta function, Turkish J. Math. 42 (2018), 1166-1179.
14. C.S. Ryoo, On the (p, q)-analogue of Euler zeta function, J. Appl. Math. Inform. 35 (2017), 303-311.
15. R. Seri, A non-recursive formula for the higher derivatives of the Hurwitz zeta function, J. Math. Anal. Appl. 424 (2015), 826-834.
16. Z.-W. Sun, Introduction to Bernoulli and Euler polynomials, A Lecture Given in Taiwan on June 6, 2002. http://maths.nju.edu.cn/~zwsun/BerE.pdf.
17. K.S. Williams and N.Y. Zhang, Special values of the Lerch zeta function and the evaluation of certain integrals, Proc. Amer. Math. Soc. 119 (1993), 35-49.

Min-Soo Kim received Ph.D. degree from Kyungnam University. His main research area is analytic number theory. Recently, his main interests focus on p-adic analysis and zeta functions, Bernoulli and Euler numbers and polynomials.
Department of Mathematics Education, Kyungnam University, Changwon, Gyeongnam 51767, Republic of Korea.
e-mail: mskim@kyungnam.ac.kr

