Acknowledgement
This work was supported by the Kyungnam University Foundation Grant, 2022.
References
- M. Abramowitz and I. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1972.
- V.S. Adamchik, A class of logarithmic integrals, In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, Kihei, HI, ACM, New York, 1997, 1-8.
- V.S. Adamchik, Polygamma functions of negative order, J. Comput. Appl. Math. 100 (1998), 191-199. https://doi.org/10.1016/S0377-0427(98)00192-7
- V.S. Adamchik, The multiple gamma function and its application to computation of series, Ramanujan J. 9 (2005), 271-288. https://doi.org/10.1007/s11139-005-1868-3
- V.S. Adamchik, On the Hurwitz function for rational arguments, Appl. Math. Comput. 187 (2007), 3-12. https://doi.org/10.1016/j.amc.2006.08.096
- T.M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976.
- J. Choi, Y.J. Cho and H.M. Srivastava, Series involving the zeta function and multiple gamma functions, Appl. Math. Comput. 159 (2004), 509-537.
- J. Choi, H.M. Srivastava, A family of log-gamma integrals and associated results, J. Math. Anal. Appl. 303 (2005), 436-449. https://doi.org/10.1016/j.jmaa.2004.08.043
- J. Choi and H.M. Srivastava, The multiple Hurwitz zeta function and the multiple Hurwitz-Euler eta function, Taiwanese J. Math. 15 (2011), 501-522.
- E. Elizalde, An asymptotic expansion for the first derivative of the generalized Riemann zeta function, Math. Comp. 47 (1986), 347-350. https://doi.org/10.1090/S0025-5718-1986-0842140-X
- E. Elizalde and A. Romeo, An integral involving the generalized zeta function, Int. J. Math. Math. Sci. 13 (1990), 453-460. https://doi.org/10.1155/S0161171290000679
- S. Hu and M.-S. Kim, Asymptotic expansions for the alternating Hurwitz zeta function and its derivatives, Preprint, 2023. https://arxiv.org/abs/2103.15528.
- M.-S. Kim, Some series involving the Euler zeta function, Turkish J. Math. 42 (2018), 1166-1179. https://doi.org/10.3906/mat-1704-107
- C.S. Ryoo, On the (p, q)-analogue of Euler zeta function, J. Appl. Math. Inform. 35 (2017), 303-311. https://doi.org/10.14317/jami.2017.303
- R. Seri, A non-recursive formula for the higher derivatives of the Hurwitz zeta function, J. Math. Anal. Appl. 424 (2015), 826-834. https://doi.org/10.1016/j.jmaa.2014.08.012
- Z.-W. Sun, Introduction to Bernoulli and Euler polynomials, A Lecture Given in Taiwan on June 6, 2002. http://maths.nju.edu.cn/~zwsun/BerE.pdf.
- K.S. Williams and N.Y. Zhang, Special values of the Lerch zeta function and the evaluation of certain integrals, Proc. Amer. Math. Soc. 119 (1993), 35-49. https://doi.org/10.1090/S0002-9939-1993-1172963-7