• Title/Summary/Keyword: q)-Stirling numbers of the second kind

Search Result 18, Processing Time 0.021 seconds

SOME PROPERTIES OF GENERALIZED q-POLY-EULER NUMBERS AND POLYNOMIALS WITH VARIABLE a

  • KIM, A HYUN
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.133-144
    • /
    • 2020
  • In this paper, we discuss generalized q-poly-Euler numbers and polynomials. To do so, we define generalized q-poly-Euler polynomials with variable a and investigate its identities. We also represent generalized q-poly-Euler polynomials E(k)n,q(x; a) using Stirling numbers of the second kind. So we explore the relation between generalized q-poly-Euler polynomials and Stirling numbers of the second kind through it. At the end, we provide symmetric properties related to generalized q-poly-Euler polynomials using alternating power sum.

ON FULLY MODIFIED q-POLY-EULER NUMBERS AND POLYNOMIALS

  • C.S. RYOO
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.1_2
    • /
    • pp.1-11
    • /
    • 2024
  • In this paper, we define a new fully modified q-poly-Euler numbers and polynomials of the first type by using q-polylogarithm function. We derive some identities of the modified polynomials with Gaussian binomial coefficients. We also explore several relations that are connected with the q-analogue of Stirling numbers of the second kind.

SYMMETRIC IDENTITIES FOR DEGENERATE q-POLY-BERNOULLI NUMBERS AND POLYNOMIALS

  • JUNG, N.S.;RYOO, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.1_2
    • /
    • pp.29-38
    • /
    • 2018
  • In this paper, we introduce a degenerate q-poly-Bernoulli numbers and polynomials include q-logarithm function. We derive some relations with this polynomials and the Stirling numbers of second kind and investigate some symmetric identities using special functions that are involving this polynomials.

IDENTITIES INVOLVING THE DEGENERATE GENERALIZED (p, q)-POLY-BERNOULLI NUMBERS AND POLYNOMIALS

  • JUNG, N.S.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.601-609
    • /
    • 2020
  • In this paper, we introduce degenerate generalized poly-Bernoulli numbers and polynomials with (p, q)-logarithm function. We find some identities that are concerned with the Stirling numbers of second kind and derive symmetric identities by using generalized falling factorial sum.

FULLY MODIFIED (p, q)-POLY-TANGENT POLYNOMIALS WITH TWO VARIABLES

  • N.S. JUNG;C.S. RYOO
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.753-763
    • /
    • 2023
  • In this paper, we introduce a fully modified (p, q)-poly tangent polynomials and numbers of the first type. We investigate analytic properties that is related with (p, q)-Gaussian binomial coefficients. We also define (p, q)-Stirling numbers of the second kind and fully modified (p, q)-poly tangent polynomials and numbers of the first type with two variables. Moreover, we derive some identities are concerned with the modified tangent polynomials and the (p, q)-Stirling numbers.

IDENTITIES INVOLVING q-ANALOGUE OF MODIFIED TANGENT POLYNOMIALS

  • JUNG, N.S.;RYOO, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.643-654
    • /
    • 2021
  • In this paper, we define a modified q-poly-Bernoulli polynomials of the first type and modified q-poly-tangent polynomials of the first type by using q-polylogarithm function. We derive some identities of the modified polynomials with Gaussian binomial coefficients. We also explore several relations that are connected with the q-analogue of Stirling numbers of the second kind.

A STUDY OF POLY-BERNOULLI POLYNOMIALS ASSOCIATED WITH HERMITE POLYNOMIALS WITH q-PARAMETER

  • Khan, Waseem A.;Srivastava, Divesh
    • Honam Mathematical Journal
    • /
    • v.41 no.4
    • /
    • pp.781-798
    • /
    • 2019
  • This paper is designed to introduce a Hermite-based-poly-Bernoulli numbers and polynomials with q-parameter. By making use of their generating functions, we derive several summation formulae, identities and some properties that is connected with the Stirling numbers of the second kind. Furthermore, we derive symmetric identities for Hermite-based-poly-Bernoulli polynomials with q-parameter by using generating functions.

THE STUDY ON GENERALIZED (p, q)-POLY-GENOCCHI POLYNOMIALS WITH VARIABLE a

  • H.Y. LEE
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.3_4
    • /
    • pp.197-209
    • /
    • 2023
  • In this paper, the generalized (p, q)-poly-Genocchi polynomials with variable a is defined by generalizing it more, and various properties of this polynomial are introduced. To do this, we define a generating function and use the definition to introduce some interesting properties as follows: basic properties, relation between Stirling numbers of the second kind and generalized (p, q)-poly-Genocchi polynomials with variable a and symmetric properties.

A q-ANALOGUE OF QI FORMULA FOR r-DOWLING NUMBERS

  • Cillar, Joy Antonette D.;Corcino, Roberto B.
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.21-41
    • /
    • 2020
  • In this paper, we establish an explicit formula for r-Dowling numbers in terms of r-Whitney Lah and r-Whitney numbers of the second kind. This is a generalization of the Qi formula for Bell numbers in terms of Lah and Stirling numbers of the second kind. Moreover, we define the q, r-Dowling numbers, q, r-Whitney Lah numbers and q, r-Whitney numbers of the first kind and obtain several fundamental properties of these numbers such as orthogonality and inverse relations, recurrence relations, and generating functions. Hence, we derive an analogous Qi formula for q, r-Dowling numbers expressed in terms of q, r-Whitney Lah numbers and q, r-Whitney numbers of the second kind.