DOI QR코드

DOI QR Code

FULLY MODIFIED (p, q)-POLY-TANGENT POLYNOMIALS WITH TWO VARIABLES

  • N.S. JUNG (College of Talmage Liberal Arts, Hannam University) ;
  • C.S. RYOO (Department of Mathematics, Hannam University)
  • Received : 2023.04.13
  • Accepted : 2023.07.12
  • Published : 2023.07.30

Abstract

In this paper, we introduce a fully modified (p, q)-poly tangent polynomials and numbers of the first type. We investigate analytic properties that is related with (p, q)-Gaussian binomial coefficients. We also define (p, q)-Stirling numbers of the second kind and fully modified (p, q)-poly tangent polynomials and numbers of the first type with two variables. Moreover, we derive some identities are concerned with the modified tangent polynomials and the (p, q)-Stirling numbers.

Keywords

Acknowledgement

This work was supported by 2022 Hannam University Research Fund.

References

  1. N.M. Atakishiyev, S.M. Nagiyev, On the RogersSzego polynomials, J. Phys. A: Math. Gen. 27 (1994), L611-L615.  https://doi.org/10.1088/0305-4470/27/17/003
  2. Yue Cai, Margaret A.Readdy, q-Stirling numbers, Advances in Applied Mathematics 86 (2017), 50-80.  https://doi.org/10.1016/j.aam.2016.11.007
  3. Mehmet Cenkcia, Takao Komatsub, Poly-Bernoulli numbers and polynomials with a q parameter, Journal of Number Theory 152 (2015), 38-54.  https://doi.org/10.1016/j.jnt.2014.12.004
  4. U. Duran, M. Acikoz, S. Araci, On (q, r, w)-stirling numbers of the second kind, Journal of Inequalities and Special Functions 9 (2018), 9-16. 
  5. N.S. Jung, C.S. Ryoo, Identities involving q-analogue of modified tangent polynomials, J. Appl. Math. & Informatics 39 (2021), 643-654. 
  6. N.S. Jung, C.S. Ryoo, A research on linear (p, q)-difference equations of higher order, J. Appl. Math. & Informatics 41 (2023), 167-179. 
  7. Takao Komatsu, Jose L. Ramirez, and Victor F. Sirvent, A (p, q)-analogue of poly-Euler polynomials and some related polynomials, Reidel, Dordrecht, The Netherlands, 1974. 
  8. Burak Kurt, Some identities for the generalized poly-Genocchi polynomials with the parameters a, b, and c, Journal of mathematical analysis 8 (2017), 156-163. 
  9. Toufik Mansour, Identities for sums of a q-analogue of polylogarithm functions, Letters in Mathematical Physics 87 (2009), 1-18.  https://doi.org/10.1007/s11005-008-0290-3
  10. C.S. Ryoo, Distribution of zeros of the (p, q)-poly-tangent polynomials, J. Appl. & Pure Math. 3 (2021), 115-127. 
  11. C.S. Ryoo, Some properties of poly-cosine tangent and poly-sine tangent polynomials, J. Appl. Math. & Informatics 40 (2022), 371-391. 
  12. P.N. Sadjang, U. Duran On two bivariate kinds of (p, q)-Bernoulli polynomials, Miskolc Mathematical Notes 20 (2019), 1185-1199. https://doi.org/10.18514/MMN.2019.2587