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SOME PROPERTIES OF GENERALIZED ¢-POLY-EULER
NUMBERS AND POLYNOMIALS WITH VARIABLE «

A HYUN KIM

ABSTRACT. In this paper, we discuss generalized g-poly-Euler numbers and
polynomials. To do so, we define generalized g-poly-Euler polynomials with
variable a and investigate its identities. We also represent generalized g-
poly-Euler polynomials E,(L]fg(w;a) using Stirling numbers of the second
kind. So we explore the relation between generalized g-poly-Euler polyno-
mials and Stirling numbers of the second kind through it. At the end, we
provide symmetric properties related to generalized g-poly-Euler polyno-
mials using alternating power sum.
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1. Introduction

A number of mathematicians have studied Euler numbers and polynomials,
Bernoulli numbers and polynomials, tangent numbers and polynomials, poly-
Euler numbers and polynomials, and poly-tanent numbers and polynomials(see
[1-14]). Mathematicians also used polylogarithm function to redefine Euler num-
bers and polynomials. This paper is also one of the studies of poly-Euler numbers
and polynomials using polylogarithm function.

In this paper, we use the following notations: N = {1,2,3,---} denotes the
set of natural numbers, Z denotes the set of integers, R denotes the set of real
numbers, and C denotes the set of complex numbers. The g-number is defined
as follows:

1—q’
where n € C' and 0 < ¢ < 1. For any n, we note that lim1 [n]g =n.
q—r
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The classical Euler polynomials E,, (x) are defined by the following generating
function:
xT - tn
et = ZETL(;E)m (t] < ).

n=0

In [8], we know that generating function of generalized Euler polynomials
E,(z;a) are defined by:

m —ZE x;a)

E,(a) = E,(0;a) is generalized Euler numbers. If we put a = 1, then gener-
alized Euler polynomials reduced to classical Euler polynomials.
For k € Z, polylogarithm function Liy(z) [1,4,5,6] is defined by

o0 n

Lip(z) = Z%

n=1

For k£ < 1, the polylogarithm functions are given

Liz(x) = ~log(1 — z), Lio(z) = ;——. Li_i(z) = A=
. P+ . e’ +42° o
LZ,Q(.%) = m7 L7,73(x) = W, A

Poly-Euler polynomials are defined by Hamahata [4], as follows:

2Li(1 — et
_— E
(et+1 Z

In [7], generalized poly-Euler polynomials are defined as the following gener-
ating function:

2Lig(1 —e™ 0
(eat+1 ZE( L5 a

This polynomial is generalized through poly-Euler polynomials defined by Hamata
[4]. For k € Z, k-th g-analogue of polylogarithm function Liy, 4(z) [5,9] is defined
as follows:

Lipg) =Y [27

n=1
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The k-th g-analogue of polylogarithm functions are given for a nonnegative
integer k:

xT

Li =

1k,0 1_ .’L"

X

Liy 41=—"

T ) (1 —ag)

) z(1 4+ zq)
L _ —

" T ) (1 —ag) (I — 2g?)

. z(q + 22q + 2xq* + 2%¢°)
le’,g =

(1—2)(1—2¢)(1 - 2¢*)(1 —2¢®)(1 —2g")
For nonnegative integers k and n, the Stirling numbers of the second kind
[2,3,8,10] are defined as the following relation

2" =" Sy(n, k) (@),
k=0

where (2) = z(x —1)(x —2)--- (x — k + 1) is falling factorial.
Generating function of the Stirling numbers Sz (n, k) is also defined as follows:

(et o 1)k B e tn
e —;SQ(n,k)H.

The equations

n;sg(n, k)= ;Sg(n, k)
and
Z Z Sy (n, k:)t—| = Z Z Sa(n, k;)t—'
n=0 k=0 n n=0 k=0 s

are satisfied for the reason that Sz(n,k) = 0 when n < k. Recurrence relation
of Stirling numbers of the second kind is

Sg(n,kj) = kSQ(n — 1,k> + Sg(n -1,k — 1),

where S2(0,0) = 1, S2(n,0) = 0(n # 0) and S3(n, k) = 0 when n < k. By the
above relation, we express some values of Stirling numbers of the second kind
Sa(n, k) in the table below(OEIS, sequence A008277, [13]):

n\k|0O 1 2 3 4 5

0 |1

1 |0 1

2 |01 1

3 |01 3 1

4 101 7 6 1
5 |0 1 15 25 10 1
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In this paper, we define generalized g-poly-Euler polynomials with variable a
through generalized poly-Euler polynomials defined by [7] and explore several
properties. To be specific, we get some identites from generalized g-poly-Euler
polynomials. Also, we utilize the generating function of Stirling numbers of the
second kind to describe the relation between generalized g-poly-Euler polynomi-
als and Stirling numbers of the second kind. At the end, we examine symmetric
properies of generalized g-poly-Euler polynomials by using alternating power
sum.

2. Generalized ¢-poly-Euler numbers and polynomials with variable a

In this section, we define generalized g-poly-Euler polynomials with variable a.
In addition, we derive some properties from expressing generalized g-poly-Euler

polynomials Eﬁlkg(x, a) in several ways.

Definition 2.1. For k € Z and 0 < ¢ < 1, generalized g-poly-Euler polynomials
with variable a are defined as the following generating function

2Lik (1 =€) 1 = .k tr
_MENT T T E( ) . _
tert +1) ¢ ngo ma(T )00

n

where Liy ,(t) = > o7 |t is k-th g-analogue of polylogarithm function.

n=1Tal}

Eff;(a) = Eff;(o; a) are called generalized g-poly-Euler numbers with variable
a when x = 0. If we set a =1, £k = 1, and ¢ — 1 in Definition 2.1, then the
generalized ¢-poly-Euler polynomials are reduced to classical Euler polynomials
because of (}1_% Liy 4(1 — e ") =t. That is,

i D) (1) =
;1_% E, o (x;1) = By ().
Theorem 2.2. For k € Z and a nonnegative integer n and m, we get
= n k n—1l,n—
En]’fg(mx;a) = Z (Z>El(7q)(a)m tgnt,
1=0
Proof. From Definition 2.1, we have

o0 ; —t
5 By - 2all =)
=" n! t(e* +1)
NN = -
n=0 n=0
- - n (k) n—I_n—l tn
:Z(Z (Z>El’q(a)m x )71"
n=0 \1=0 ’

Therefore, we finish the proof of Theorem 2.2 by comparing the coefficients of
t" O

nl”
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If m =1 in Theorem 2.2, then we get the following corollary.

Corollary 2.3. For k € Z and a nonnegative integer n, we have

By =N () ) n—1
B =3 (7).

Theorem 2.4. For k € Z and a nonnegative integer n and m, we obtain

- n k n—Il,_n—
E,(f;(ma:;a) = Z (Z>El()q)(a:;a) (m — 1)t
1=0
Proof By utlizing Definition 2.1, we have

n ; —t
ZE(k) ma; a) t _ 2Ligq(1—e )ezte(m—l)zt

t(e® 4+ 1)
= (Z B (x; a)f;) (Z(m - 1)%”2) (2.2)
n=0 n=0
RZ::O (; (z) b n!

Therefore, we end the proof by comparing the coefficients of % on both sides of
the above equation (2.2). O

As a result of Theorem 2.2 and Theorem 2.4, Eflkc), (mx;a) can be presented
as generalized g-poly-Euler polynomials and generalized g-poly-Euler numbers,
respectively.

Theorem 2.5. For k € Z and a nonnegative integer n, we get
=~ (n k n—
EM(z+y;a) = Z(Z>E;7q)(x;a)y L

1=0
Proof. Proof is omitted since it is a similar method of Theorem 2.2. O

Theorem 2.6. For k € Z and n € N, we have

|
—

B+ b0 - B0 = 3 (1) B @i
l

Il
=)

Proof. By using Definition 2.1, we have

ZE(k)x—i—la ZE(k)xa

n=0
_ Mem ot
- (eat + 1) ( 1) (23)

S (S ()] 5
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Then we compare the coefficients of t - for n > 1. The reason both sides of the
above equation (2.3) can be compared the coeflicients is that E(k)(x + Lia) —
Eé{gq) (z;a) = 0. Thus, the proof is done. O

Theorem 2.7. For k € Z and a nonnegative integer n, we get

oo 1
nE® (z;a) Zi ANVl o En(z —m;a)
n—1,q l—f—l} ’ ’

=0 m=0

where E,(x;a) is generalized Euler polynomials.

Proof. By using Definition 2.1, we have

oo

_ 1 i (1 — e_t)l+1 2 ext

B— k at
te= [k e+l

[e%S) oo I+1 l+1 ) . m
Z(;%( )l—l—l] En(x—m,a)> E

Because of the identity > 7, nk;(x a) tt:, =3 OnE( ) NEHOE £, we mul-

tiply both sides of the above equation (2.4) by ¢ and compare the coefficients of
t" . Hence, we end the proof. O

Theorem 2.8. For k € Z and n € N, we obtain

k I m+1 m4+1 1)1 m—+r
nEplqm—gzzz( ) g ol om )"

=0 m=0 r=0

Proof. From Definition 2.1, we have

> Bl
n=0

2 = l—e! i = m (am+x)t
:t<§([l+1])k> (ZH) e “)

l m=0
9 X I m+1 m+1 (—1)T€_M (25)
= - 7(_1)l—m6(al—am+x)t
22 (") T
m+1 l—m-—+r n
1 t
Z(ZZZ(”H ) 1)1 (al‘”m‘””j)")r
=0 m=0 r=0 + ] n.

If we multiply both sides of the above equation (2.5) by ¢, then we can compare
the coefficients. The reason is that > >~ E EY (z; a)ﬂ => nE(k) (z50)5

n!

Therefore, the proof is done. D
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3. Relation between generalized g-poly-Euler polynomials and
Stirling numbers of the second kind

In this section, we examine the relation of generalized g-poly-Euler polyno-
mials and Stirling numbers of the second kind.

Theorem 3.1. For k € Z and a nonnegative integer n, we get

n U+l 1)lFmti)
Ek ZZ ( ) m! So(l + 1, m)En,l(m;a)7

2
— — [m]% [+1

where E,(x;a) is generalized Euler polynomials.

Proof. By utilizing Definition 2.1, we have

m=1
1 X & (—1)tmml o2
StLX g crmaae @
oo n+l 00
( 1)77,+7n+1ml 52(n+ Lm) tn> (Z n)
= Z Z En($7a‘)7
(n—O m=1 [my‘; n+1 n! n=0 !
e n I+1 _1\l+m+1, n
S (S5 () e e &
n=0 \I1=0 m=1 q :

can be satisfied is that Sa(n,l) = 0 when n < [. Thus, the proof is done by
comparing the coefficients of % O

Theorem 3.2. For k € Z and n € N, we obtain

nE,(Lk)lq ZZ ( ) (—1)HHm L (i )52(l m+ 1) Eo_y(z:0),

=0 m=0 m+”q

where E,(x;a) is generalized Euler polynomials.
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Proof. From Definition 2.1, we have

t
> Biwia)
n=0
_1 i CD)mmle D™ 2
- k at
t = [mlg m! e +1
I = (=) tmH (m 4 1)! "2
= - S 1)————e"
P3P [m + 1% 2(nm A1) S
n=0m=0 q
o n l

n=0 \[!=0 m=0

1 n D+ (4 1 i
:tZ<ZZ<l)< )[m+(1]q+)52(lm+1)E (g;a)>m,

If we multiply both sides of the equation (3.2) by ¢, then we can compare the co-

t'n.+1

efficients because of the identity Y7, E,(Ikg(x, a)
Consequently, the proof is complete.

Theorem 3.3. For k € Z and n € N, we obtain

n

l
E(k) (z;a) = Z Z ( ) mSa(l m)ET(Lk_)Lq(a)a

1=0 m=0
where (2)m = x(x —1) -+ (x —m + 1) is falling factorial.

Proof. From Definition 2.1, we have

" 2L (1— et x
> B ey = Pl 2 ) 1)

n! t(eat +1)

B (e

m=0

n=0

_ 2Lip (1—e7!) & et —1)m

: ) (
t(e® +1) Z (@)m m!

m=0

:Z ZZ (@)mSa(l,m)E® (a) | .
l

Thus, we finish the proof by comparing the coefficients of & .

e
Theorem 3.4. For k € Z and a nonnegative integer n, we obtain

nET(Lk)1 g ta;a)+ nE® (z;a)

n—1,q

"/ 1iHm+ (i,
ZQEZ(J( )[m+(ﬂq+ Eatm+ e

U =3 onEY (x50) Y
i
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Proof. By using Definition 2.1, we have

oo

ZET(L’f;(ac—i—a;a +ZE(k) x;a)
n=0
2Ling(1—€™") 2t ¢ at
— 3 X a 1
EES (e +1)
o0 3.4)
2 n+m+1 m+ ) " ntn (
t(ZZ [m + 1]% SQ(nm+1)n. ch n!
n=0m=0 n=0
l+m+1 1 tn
3 (20 (1) i s )
=0 m=0 m q n
Let us multiply both sides of the above equation (3.4) by ¢. Then we can
compare the coefficients of £, because of the identity > o0 E EF )(x+a a)t it
S0 B (wa) s = 300 OnE( D@ +aa)s +37° nE(k) (@30) L. Hence,
we end the proof. O

4. Symmtric properties of the generalized g-poly-Euler polynomials
using alternating power sum.

In this section, we first offer a well-known alternating power sum and uti-
lize it to provide symmetric identities of generalized g-poly-Euler polynomials.
Furthermore, we investigate the symmetric identity of generalized g-poly-Euler
polynomials.

Let w is an odd number. Then we can easily see

o0
~ " et 41
An - = ) .
7;) (w) n! et +1 (4.1)
where A, (w) = }”:_01(—1)1 "™ is called alternating power sum(see [14]).

Theorem 4.1. Let wy and wo be an odd number and n be a nonnegative integer.
Then we get

Lqu —wlt Z ( ) l-‘rlE( )(wlx;a)jln_l(wﬂ

1=0
" /n
. _ 1 - k 7
= Lij4(1 — e Z <l>an lwg lwl1+1Ez(,q) (w25 a)Ap—i(w1).

1=0

Proof. Let us show that symmetric property of generalized g-poly-Euler polyno-

mials by using alternating power sum. To do this we suppose that

2Lig q(1 — ™) Lig g (1 — e "2") (212" 4 1)

Fl(t) = t(eawlt + 1)(6aw2t + 1)

et (4.2)
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Then we obtain
Fi(t)

= Lik,q(l - efwlt) 2Lik’q(1 _ eiwﬁ) wiwazt €

(eawgt + 1) eawlt + 1

= Lip q(1 — e~ t) <w2 ZE (wiz;a) ) (ZA awlt) >
= Lig,q(1—e™™) Z Z < ) wp™! l+1E(k) (wyz; a)fln_l(wg)t—.

awiwat + 1

|
n=0 =0 v
(4.3)
From similar method of the equation (4.3), we get
Fi(t)
- Wi ~ " (44
= Ligq(1 — e 2% ZZ( ) lwllJrlE( )(wzl‘;a)An—l(wl)a. (44)

n=0 [=0

By comparing the coefficients of & 5 on both sides of the equations (4.3) and
(4.4), we finish the proof. This theorem is symmetric property. U

Theorem 4.2. Let wy and wo be an odd number and n be a nonnegative integer.
Then we have

< > H'l S’_lEl(wzz)fln_l(wl)
1=0

n
n 3 .
= (l>a wl;lw? lEl(w1x)An_l(w2),
1=0

where FE,(x) is classical Euler polynomials.

Proof. First, let us assume that
8Lk (1= e~ Liny (1 = ") (e + 1)

F5(t) = awiwat 4.5
2( ) t2(eaw1t + I)Q(eawzt + 1)2 € ( )
Then we calculate
Fg(t) _ 2Lik7q(1 — efwlt) 2Lik.’q(1 — 67w2t)
t(eawit 4 1) t(eawat 4 1)
x 2 eawlwzxt eawlet + 1
(eawlt + 1) eant +1
oo 00 ) 4.6)
tn tn (
n+1 n+1 k
- (Sl ) (S ol )
n=0

x> ZZ ( ) wi™ g-lEl(wzx)An_l(wl)ﬁ.

n=0
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In a similar way to the above equation (4.6), we get

tn e tn
Z wnJrl (k) ) ' Z wnglEr(fg (a)ﬁ
n=0 e n=0 n (4 7)
- tn
xzz() g B i) )y

n=0 [=0

Hence, the proof is complete by comparing the coefficients of %l, on both sides
of the equations (4.6) and (4.7). O

Theorem 4.3. Let n be a nonnegative integer and wy,ws > 0 (wy # ws). Then
we have

M:

( > wy lE(k)(w z;a) ET(L )l qwiz;a)
1=0

= Z <7) wi” lE(k)(w x;a) E( ) gw2zia).
1=0

Proof. Let us consider the function
4Lig (1 — e 1) Lij 4 (1 — e~ w21)
tQ(eawlt + 1)(eaw2t + 1)

F(t) = eZwrwaet, (4.8)

Then we obtain

F3(t) — 2le7f1(1 B eiwlt) ewlngt 2le(1 B eint) ewlwgmt
t(ewnt + 1) t(ewwat + 1)

= (& o (49
n — 7
- Z Z (l)wllﬂwg lHEl(,I;)(wﬂ;G)E,(f_)l,q(ww;a) =
n=0 =0 !

By calculating in the same way as the above equation (4.9), we can get

F5(t) = Z Z (l>wl2+1w{‘ lHEl(fz)(wlx;a)ET(Zk_)l,q(ng;a) o (4.10)

n=0 \[=0

The proof is complete as a result of the equations (4.9) and (4.10). O
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