• 제목/요약/키워드: pure submodule

검색결과 18건 처리시간 0.018초

PURITY OF GENERALIZED INVERSE POLYNOMIAL MODULES

  • Park, Sang-Won;Cho, Eun-Ha
    • East Asian mathematical journal
    • /
    • 제21권1호
    • /
    • pp.105-112
    • /
    • 2005
  • In this paper we show that we can extend the purity extension properties of left R-modules to the various generalized inverse polynomial modules.

  • PDF

ON 𝜙-SEMIPRIME SUBMODULES

  • Ebrahimpour, Mahdieh;Mirzaee, Fatemeh
    • 대한수학회지
    • /
    • 제54권4호
    • /
    • pp.1099-1108
    • /
    • 2017
  • Let R be a commutative ring with non-zero identity and M be a unitary R-module. Let S(M) be the set of all submodules of M and ${\phi}:S(M){\rightarrow}S(M){\cup}\{{\emptyset}\}$ be a function. We say that a proper submodule P of M is a ${\phi}$-semiprime submodule if $r{\in}R$ and $x{\in}M$ with $r^2x{\in}P{\setminus}{\phi}(P)$ implies that $rx{\in}P$. In this paper, we investigate some properties of this class of sub-modules. Also, some characterizations of ${\phi}$-semiprime submodules are given.

On Representable Rings and Modules

  • Mousavi, Seyed Ali;Mirzaei, Fatemeh;Nekooei, Reza
    • Kyungpook Mathematical Journal
    • /
    • 제62권3호
    • /
    • pp.407-423
    • /
    • 2022
  • In this paper, we determine the structure of rings that have secondary representation (called representable rings) and give some characterizations of these rings. Also, we characterize Artinian rings in terms of representable rings. Then we introduce completely representable modules, modules every non-zero submodule of which have secondary representation, and give some necessary and sufficient conditions for a module to be completely representable. Finally, we define strongly representable modules and give some conditions under which representable module is strongly representable.

Purely Extending Modules and Their Generalizations

  • Shiv Kumar;Ashok Ji Gupta
    • Kyungpook Mathematical Journal
    • /
    • 제63권1호
    • /
    • pp.15-27
    • /
    • 2023
  • A purely extending module is a generalization of an extending module. In this paper, we study several properties of purely extending modules and introduce the notion of purely essentially Baer modules. A module M is said to be a purely essentially Baer if the right annihilator in M of any left ideal of the endomorphism ring of M is essential in a pure submodule of M. We study some properties of purely essentially Baer modules and characterize von Neumann regular rings in terms of purely essentially Baer modules.

CHARACTERIZATION OF PRIME SUBMODULES OF A FREE MODULE OF FINITE RANK OVER A VALUATION DOMAIN

  • Mirzaei, Fatemeh;Nekooei, Reza
    • 대한수학회지
    • /
    • 제54권1호
    • /
    • pp.59-68
    • /
    • 2017
  • Let $F=R^{(n)}$ be a free R-module of finite rank $n{\geq}2$. In this paper, we characterize the prime submodules of F with at most n generators when R is a $Pr{\ddot{u}}fer$ domain. We also introduce the notion of prime matrix and we show that when R is a valuation domain, every finitely generated prime submodule of F with at least n generators is the row space of a prime matrix.

ASSOCIATED PRIME SUBMODULES OF A MULTIPLICATION MODULE

  • Lee, Sang Cheol;Song, Yeong Moo;Varmazyar, Rezvan
    • 호남수학학술지
    • /
    • 제39권2호
    • /
    • pp.275-296
    • /
    • 2017
  • All rings considered here are commutative rings with identity and all modules considered here are unital left modules. A submodule N of an R-module M is said to be extended to M if $N=aM$ for some ideal a of R and it is said to be fully invariant if ${\varphi}(L){\subseteq}L$ for every ${\varphi}{\in}End(M)$. An R-module M is called a [resp., fully invariant] multiplication module if every [resp., fully invariant] submodule is extended to M. The class of fully invariant multiplication modules is bigger than the class of multiplication modules. We deal with prime submodules and associated prime submodules of fully invariant multiplication modules. In particular, when M is a nonzero faithful multiplication module over a Noetherian ring, we characterize the zero-divisors of M in terms of the associated prime submodules, and we show that the set Aps(M) of associated prime submodules of M determines the set $Zdv_M(M)$ of zero-dvisors of M and the support Supp(M) of M.

SOME ABELIAN MCCOY RINGS

  • Rasul Mohammadi;Ahmad Moussavi;Masoome Zahiri
    • 대한수학회지
    • /
    • 제60권6호
    • /
    • pp.1233-1254
    • /
    • 2023
  • We introduce two subclasses of abelian McCoy rings, so-called π-CN-rings and π-duo rings, and systematically study their fundamental characteristic properties accomplished with relationships among certain classical sorts of rings such as 2-primal rings, bounded rings etc. It is shown that a ring R is π-CN whenever every nilpotent element of index 2 in R is central. These rings naturally generalize the long-known class of CN-rings, introduced by Drazin [9]. It is proved that π-CN-rings are abelian, McCoy and 2-primal. We also show that, π-duo rings are strongly McCoy and abelian and also they are strongly right AB. If R is π-duo, then R[x] has property (A). If R is π-duo and it is either right weakly continuous or every prime ideal of R is maximal, then R has property (A). A π-duo ring R is left perfect if and only if R contains no infinite set of orthogonal idempotents and every left R-module has a maximal submodule. Our achieved results substantially improve many existing results.

ON 𝑺-CLOSED SUBMODULES

  • Durgun, Yilmaz;Ozdemir, Salahattin
    • 대한수학회지
    • /
    • 제54권4호
    • /
    • pp.1281-1299
    • /
    • 2017
  • A submodule N of a module M is called ${\mathcal{S}}$-closed (in M) if M/N is nonsingular. It is well-known that the class Closed of short exact sequences determined by closed submodules is a proper class in the sense of Buchsbaum. However, the class $\mathcal{S}-Closed$ of short exact sequences determined by $\mathcal{S}$-closed submodules need not be a proper class. In the first part of the paper, we describe the smallest proper class ${\langle}\mathcal{S-Closed}{\rangle}$ containing $\mathcal{S-Closed}$ in terms of $\mathcal{S}$-closed submodules. We show that this class coincides with the proper classes projectively generated by Goldie torsion modules and coprojectively generated by nonsingular modules. Moreover, for a right nonsingular ring R, it coincides with the proper class generated by neat submodules if and only if R is a right SI-ring. In abelian groups, the elements of this class are exactly torsionsplitting. In the second part, coprojective modules of this class which we call ec-flat modules are also investigated. We prove that injective modules are ec-flat if and only if each injective hull of a Goldie torsion module is projective if and only if every Goldie torsion module embeds in a projective module. For a left Noetherian right nonsingular ring R of which the identity element is a sum of orthogonal primitive idempotents, we prove that the class ${\langle}\mathcal{S-Closed}{\rangle}$ coincides with the class of pure-exact sequences of modules if and only if R is a two-sided hereditary, two-sided $\mathcal{CS}$-ring and every singular right module is a direct sum of finitely presented modules.