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SOME ABELIAN MCCOY RINGS

Rasul Mohammadi, Ahmad Moussavi, and Masoome Zahiri

Abstract. We introduce two subclasses of abelian McCoy rings, so-

called π-CN -rings and π-duo rings, and systematically study their funda-

mental characteristic properties accomplished with relationships among
certain classical sorts of rings such as 2-primal rings, bounded rings etc.

It is shown that a ring R is π-CN whenever every nilpotent element of
index 2 in R is central. These rings naturally generalize the long-known

class of CN -rings, introduced by Drazin [9]. It is proved that π-CN -

rings are abelian, McCoy and 2-primal. We also show that, π-duo rings
are strongly McCoy and abelian and also they are strongly right AB. If

R is π-duo, then R[x] has property (A). If R is π-duo and it is either

right weakly continuous or every prime ideal of R is maximal, then R has
property (A). A π-duo ring R is left perfect if and only if R contains

no infinite set of orthogonal idempotents and every left R-module has a

maximal submodule. Our achieved results substantially improve many
existing results.

1. Introduction and motivation

Throughout the current article, our rings will be associative, not necessarily
commutative unless specified this, and containing identity element 1. Almost
all notions and notations are standard being in agreement with the well-known
book [23]. The more special terminology will be explained in the sequel. Recall
for completeness of the exposition that a ring R is said to be 2-primal if its
Baer-McCoy radical (in other terms, the prime radical or the lower nil-radical)
Nil∗(R) coincides with the set Nil(R) consisting of all nilpotents in R, that is,
Nil∗(R) = Nil(R).

A ring R is said to be Armendariz if the product of two polynomials in R[x]
is zero if and only if the product of their coefficients is zero. Following [28], a
ring R is called right McCoy when the equation f(x)g(x) = 0 implies f(x)c = 0
for some non-zero c ∈ R, where f(x), g(x) are non-zero polynomials in R[x].
Left McCoy rings are defined dually and they satisfy dual properties. A ring
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R is called McCoy if it is both left and right McCoy. This name was chosen by
Nielsen in [28] in recognition of McCoy’s proof in [27, Theorem 2].

Each of the four ring theoretic properties, Armendarizness, reversibility,
polynomial semicommutativity and right duoness, implies the right McCoy
condition. A natural question is whether there is a subclass of right McCoy
rings which encompasses all these ring classes. We prove that there is a sub-
class of abelian right McCoy rings, namely π-CN-rings. It has been shown by
Chen et al. [24] that the class of semicommutative right McCoy rings properly
contains both the classes of reversible rings and polynomial semicommutative
rings. However, this class does not contain all Armendariz rings because there
are Armendariz rings which are not semicommutative (see [20, Example 14]).

Recall the classical result of Drazin from [9, Theorem 1] stating that all
idempotents of a given ring are always central when all its nilpotents are always
central. A ring R is called a CN -ring if any nilpotent element of it is central.
We shall call a ring R a π-CN -ring whenever every nilpotent element of R of
index 2 is central, and an abelian ring whenever every idempotent element of
R is central.

We have the following irreversible implications:

right duo −→ π-duo
↗ ↓

commutative → reversible → ablian McCoy
↘ ↑

CN −→ π-CN
↓

2-primal

A right ideal of R is called bounded if it contains a non-zero ideal of R, and
Faith said a ring is strongly right (resp., left) bounded if every non-zero right
(resp., left) ideal were bounded. Hwang et al. in [21], initiated and studied the
notion of strongly right AB rings as a generalization of strongly right bounded
ring. A ring R is strongly right AB if every non-zero right annihilator of R is
bounded. Strongly left AB rings are defined dually and R is called strongly AB
if it is both strongly right AB and strongly left AB. Note that strongly right
AB property is not preserved under the construction of polynomial rings.

For 2-primal rings, there is a question of Birkenmeier, Heatherly and Lee
[3, Problem 3, p. 373] which asks if the prime radical of a ring R contains
all nilpotent elements of index two, is R a 2-primal ring? In [17, Example 1]
Hirano, Huynh and Park give the answer to this question in the negative. By
definition, π-CN-rings satisfy the property that N2(R) ⊆ Nil∗(R), and hence
they are 2-primal. In fact for a π-CN-ring R, N2(R) ⊆ Nil∗(R) and Nil∗(R)
has IFP. By Proposition 2.9, a ring R is 2-primal if and only ifN2(R) ⊆ Nil∗(R)
and Nil∗(R) has IFP.
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In Lemma 2.7, we see that the lower radical coincides with the nilpotent
elements in a π-CN-ring, so that by Corollary 2.8, every π-CN-ring R is 2-
primal, and so Nil(R[x]) = Nil(R)[x]. By Proposition 2.11, π-CN-rings are
abelian (the idempotent elements are central). Our main result Theorem 2.15
shows that π-CN -rings are McCoy. As a consequense, we show that when R
is a right zip π-CN -ring, then R[x] is right strongly AB. A ring R is called a
power serieswise McCoy ring if any power series f(x) =

∑∞
i=0 aix

i ∈ R[[x]] is
a zero-divisor in R[[x]] if and only if there is a non-zero element r ∈ R which
satisfies rf(x) = 0, in this case. In Corollary 2.21, we show that, when R
is a π-CN -ring and Nil(R) is Noetherian as a right R-module, then R is a
power series-wise McCoy ring. Consequently, right Noetherian π-CN-rings are
power series-wise McCoy. This result generalizes Fields [12, Theorem 5] for
noncommutative rings. We also prove that π-CN -rings are 2-primal. It is also
shown that R is a right zip right McCoy ring which is strongly right AB if and
only if R[x] is a right zip and strongly right AB ring.

In Subsection 2.2, we introduce another subclass of abelian McCoy rings, so-
called π-duo rings, and systematically study their fundamental characteristic
properties. We say a ring R is left π-duo if for every 0 ̸= a ∈ R, there exists
a positive integer k for which 0 ̸= akR ⊆ Rak. In [26], G. Marks shows that
a noncommutative skew polynomial ring is never one sided duo. We provide a
noncommutative ring R, for which, the polynomial ring R[x] is a π-duo ring.
We present and analyze the notion of π-duo rings as a generalization of duo
rings in the current research, which is driven by the foregoing discussion, and
prove that π-duo rings are 2-primal. Our primary finding is that π-duo rings
are McCoy and abelian at the same time. When R is a one-sided π-duo ring,
we show that R is reduced only if R is nonsingular. Furthermore, we elaborate
on the fact that a right π-duo ring R has the right property (A) provided that
either of the following requirements are met:

• every prime ideal of R is maximal.
• R is right weakly continuous.
• R is right FI-extending with ACC on direct summands.
In Subsection 2.3, we study the property (A) of π-duo rings. Our achieve-

ments here are Theorems 2.41, 2.44, 2.45. We use R[x] and R[[x]] to denote
the ring of all polynomials and the ring of all formal power series over a ring
R, respectively. The set of central elements of R is denoted by Cent(R) and,
we use rR(X) and ℓR(X), respectively, to denote the right and left annihilator
of X in R.

2. Main results and applications

Our chief results are distributed into four subsections as follows: The first
one is devoted to properties of the so-defined by us π-CN -rings and in the
second one we initiate and study the π-duo rings, whereas the third one is
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concerned with the direct relations of the π-CN -rings and π-duo rings to the
theory of bounded rings, as well as the property (A).

2.1. π-CN-rings

According to M. P. Drazin [9], a ringR is a CN-ring whenever every nilpotent
element is central. By [9, Theorem 1], the centrality of all the nilpotent elements
of a given associative ring implies the centrality of every idempotent element;
and by [9, Theorem 7] these two properties are in fact equivalent in any regular
ring.

Now we give a natural generalization of the class of CN -rings. We then
provide a necessary and sufficient condition, for the centrality of nilpotent
elements in the wider class of rings, so-called π-CN -rings:

Definition 2.1. A ring R is a π-CN -ring if for every non-zero nilpotent element
a ∈ R, 0 ̸= ak is central, for some positive integer k.

Let N2(R) = {a ∈ Nil(R) | a is nilpotent of index 2}. Now we show that
a ring R is a π-CN -ring whenever every nilpotent element of R of index 2 is
central.

Lemma 2.2. A ring R is a π-CN-ring if and only if N2(R) ⊆ Cent(R).

Proof. Assume that R is a π-CN -ring and 0 ̸= a ∈ N2(R). So we get a ∈
Cent(R).

Conversely, assume that N2(R) ⊆ Cent(R), and 0 ̸= a ∈ Nil(R). Then
there exists a minimal integer k such that ak = 0. As 0 ̸= ak−1 ∈ N2(R) we
get ak−1 is a non-zero central element in R. □

Lemma 2.3. Let R be a π-CN-ring with Char(R) = 2. Then N2(R) is an
ideal of R.

In the following, we provide an example of a π-CN -ring which is not a CN -
ring.

Example 2.4. Let R = Z2⟨a, b, c⟩, where a, b, c are noncommuting indeter-
minates. Let I be the ideal of R generated by the set {a3, b2, c3, ab − ba, bc −
cb, ca2, c2a, ac, cab}. Let S = R

I . Then a, c ∈ Nil(S) and ac = 0 ̸= ca which
implies that S is not a CN -ring. Note that any element of S is of the form
γ = s1 + s2a+ s3a

2 + s4b+ s5c+ s6c
2 + s7ca+ s8ab+ s9a

2b+ s10cb+ s11c
2b,

where si ∈ Z2, 1 ≤ i ≤ 11. Clearly each nilpotent element of S is of the form

β = t1a+ t2a
2 + t3b+ t4c+ t5c

2 + t6ca+ t7ab+ t8a
2b+ t9cb+ t10c

2b,

where t1, . . . , t10 ∈ Z2. As β2 = t21a
2+ t24c

2+ t4t1ca ∈ Cent(S), we deduce that
S is a π-CN -ring.

Let R be a ring and M an (R,R)-bimodule. Recall that the trivial extension
of R and M is

R ∝ M = {(r,m) : r ∈ R,m ∈ M},
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with addition defined componentwise and multiplication defined by

(r,m)(s, n) = (rs, rn+ms).

For any subset I of R, we denoted I ∝ M = {(r,m) : r ∈ I,m ∈ M}.

Lemma 2.5. Let R ∝ M be a trivial extension of R and M . Then R ∝ M is
π-CN if and only if R is π-CN and rm = mr for every r ∈ R and m ∈ M .

Proof. By Lemma 2.2, R ∝ M is a π-CN-ring if and only if N2(R ∝ M) ⊆
Cent(R ∝ M). As N2(R ∝ M) = N2(R) ∝ M , we obtain that R ∝ M is a
π-CN-ring if and only if N2(R) ∝ M ⊆ Cent(R ∝ M). Thus R ∝ M is π-CN
if and only if R is a π-CN-ring and rm = mr for every r ∈ R and m ∈ M . □

Corollary 2.6. Let R be a π-CN-ring with Char(R) = 2. Then R ∝ N2(R) is
π-CN.

Proof. Assume that a, b ∈ N2(R). Then (a+ b)2 = ab+ ba = 2ab = 0. Now let
c ∈ N2(R) and r ∈ R. Then (cr)2 = crcr = c2r2 = 0. Thus N2(R) is an ideal
of R. □

The sum of the nilpotent ideals of R, called the Wedderburn radical, is
denoted by W (R), the lower nil radical Nil∗(R) is the intersection of all prime
ideals of R, the Levitzky radical L-rad(R) is the largest locally nilpotent ideal
of R, the upper nil radical Nil∗(R) is the sum of all nil ideals, and Nil(R) is
the set of all nilpotent elements of R. The readers can be referred to [4], for
more details.

Lemma 2.7. Let R be a π-CN-ring. Then W (R) = Nil∗(R) = L-rad(R) =
Nil∗(R) = Nil(R).

Proof. Assume that a ∈ Nil(R). If a2 = 0, then we get a ∈ Cent(R) and so
(aR)2 = 0, which implies that a ∈ W (R), as desired.

If k ≥ 3 is a minimal integer such that ak = 0, then 2k − 2 ≥ k and so
ak−1ak−1 = 0. As R is a π-CN -ring, we have ak−1 ∈ Cent(R). It follows that
ak−1RaR = 0, and that (ak−2RaRa)2 = 0 and so ak−2RaRa ⊆ Cent(R). This
means that

(ak−2RaRa)Ra = Ra(ak−2RaRa) = 0.

So (ak−3RaRaRaRa)2 = 0, which implies that ak−3RaRaRaRa ⊆ Cent(R).
So

(ak−3RaRaRaRa)Ra = Ra(ak−3RaRaRaRa) = 0.

Continuing in this way we get (aR)2k = 0, as desired. □

Corollary 2.8. Every π-CN-ring R is 2-primal, and so Nil(R[x]) = Nil(R)[x].

An ideal I of a ring R is said to have IFP if R/I is a semicommutative ring.
Note that, for 2-primal rings, there is a question of Birkenmeier, Heatherly and
Lee [3, Problem 3, p. 373] which asks if the prime radical of a ring R contains
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all nilpotent elements of index two, is R a 2-primal ring? In [17, Example 1]
Hirano, Huynh and Park give the answer to this question in the negative.

By definition, π-CN-rings satisfy the property that N2(R) ⊆ Nil∗(R), and
hence they are 2-primal. In fact for a π-CN-ring R, N2(R) ⊆ Nil∗(R) and
Nil∗(R) has IFP.

Proposition 2.9. A ring R is 2-primal if and only if N2(R) ⊆ Nil∗(R) and
Nil∗(R) has IFP.

Proof. First assume that R is a 2-primal ring. Then clearly N2(R) ⊆ Nil∗(R).
For provingNil∗(R) has IFP, assume on the contrary that there exist a, b, r ∈ R
such that ab ∈ Nil∗(R), but arb ̸∈ Nil∗(R). Then there exists a minimal prime
ideal P of R such that arb ̸∈ P . As every minimal prime ideal of 2-primal ring
is completely prime and ab ∈ Nil∗(R) ⊆ P , we must have a ∈ P or b ∈ P . So
we have arb ∈ P , which is a contradiction. Thus aRb ⊆ Nil∗(R) which implies
that Nil∗(R) has IFP.

Conversely, assume thatN2(R) ⊆ Nil∗(R) andNil∗(R) has IFP. For proving
R is a 2-primal ring, assume that a ∈ Nil(R). Then there exists an integer k
such that ak ̸= 0 but a2k = 0. It follows that ak ∈ N2(R). As N2(R) ⊆ Nil∗(R)
we get ak ∈ Nil∗(R). AsNil∗(R) has IFP we get (aR)k ⊆ Nil∗(R). This means
that a ∈ Nil∗(R), implying R is 2-primal. □

Corollary 2.10. Let R be a π-CN-ring. Then N2(R) ⊆ Nil∗(R) and Nil∗(R)
has IFP.

An idempotent e ∈ R is called left (resp. right) semicentral if xe = exe
(resp. ex = exe) for all x ∈ R. An idempotent which is both right and semi-
central is central.

Proposition 2.11. Every π-CN-ring is abelian.

Proof. Assume that e is an idempotent of R. Then (eR(1 − e))2 = 0 implies
that eR(1 − e) ⊆ Cent(R). So eR(1 − e) = e2R(1 − e) = e(eR(1 − e)) =
(eR(1 − e))e = 0. This means that eR = eRe, i.e., e is a right semicentral
idempotent. Similarly, from ((1 − e)Re)2 = 0 we get (1 − e)Re ⊆ Cent(R)
which implies that (1− e)Re = (1− e)Re2 = ((1− e)Re)e = e((1− e)Re) = 0.
Hence e is a left semicentral idempotent. As e is both left and right semicentral,
it follows that e is a central idempotent, as desired. □

Proposition 2.12. A π-CN-ring R is nonsingular if and only if it is reduced.

Proof. Clearly any reduced ring is nonsingular. For the converse, assume that
R is nonsingular and a ∈ R such that a2 = 0. Then a ∈ Cent(R) and so
(Ra)2 = 0. Next we show that rR(aR) is an essential right ideal of R. For,
take 0 ̸= b ∈ R. If aRb ̸= 0, then 0 ̸= Rba = aRb ⊆ aR ⊆ rR(aR). So rR(aR)
is an essential right ideal of R. As R is nonsingular, we must have aR = 0, so
a = 0. Therefore R is a reduced ring. □

Lemma 2.13. Every minimal left ideal of a π-CN-ring is an ideal.
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Proof. Assume that L is a minimal left ideal of R. Then by Brauer’s Lemma,
[23, (10.22)], we get either L2 = 0 or L = Re. If L2 = 0, then since R is π-CN,
we get L ⊆ Cent(R) and so L = RL = LR, which ends the proof. If L = Re,
then LR = ReR = eR, because R is abelian. So the result follows. □

Lemma 2.14. Let R be a π-CN-ring. Then for each f(x) =
∑m

i=0 aix
i, g(x) =∑n

j=0 bjx
j with f(x)g(x) = 0, there exists an integer l such that al+1

0 g(x) = 0.

Proof. We will show that a2j+1
0 bj = 0 for every 0 ≤ j ≤ n. From the equation

f(x)g(x) = 0, we get

a0b0 = 0,(1)

a0b1 + a1b0 = 0,(2)
...

a0bt+1 + a1bt + · · ·+ at+1b0 = 0.(3)

Multiplying equation (2) on the left and the right side by a0, it gives a
2
0b1a0 +

a0a1b0a0 = 0. As (b0a0)
2 = 0, we get b0a0 ∈ Cent(R) and so

0 = a20b1a0 + a0a1b0a0 = a20b1a0 + a0b0a0a1 = a20b1a0.

It follows that (a20b1)
2 = 0 and so a20b1 ∈ Cent(R). From this and a20b1a0 = 0,

we get a30b1 = 0. Inductively assume that a2t+1
0 bj = 0 for every 0 ≤ j ≤ t.

Hence (bja
2t+1
0 )2 = 0 and so bja

2t+1
0 ∈ Cent(R). Multiplying the equation (3)

on the left side by a0 and right side by a2t+1
0 we get

a20bt+1a
2t+1
0 + a0a1bta

2t+1
0 + · · ·+ a0at+1b0a

2t+1
0 = 0.

As (bja
2t+1
0 )2 = 0 for every 0 ≤ j ≤ t, we get bja

2t+1
0 ∈ Cent(R) for every

0 ≤ j ≤ t. Thus

(∗) a20bt+1a
2t+1
0 + a0bta

2t+1
0 a1 + · · ·+ a0b0a

2t+1
0 at+1 = 0.

Also for every s ≤ 2t + 1, (as0bja
2t−s+1
0 )2 = 0 and so as0bja

2t−s+1
0 ∈ Cent(R)

for every 0 ≤ j ≤ t. So for every 0 ≤ j ≤ t, we get

a0bja
2t+1
0 = (a0bja

2t
0 )a0 = a0(a0bja

2t
0 ) = (a20bja

2t−1
0 )a0

= a0(a
2
0bja

2t−1
0 ) = · · · = a2t0 bja

2
0 = (a2t0 bja0)a0

= a0(a
2t
0 bja0) = a2t+1

0 bja0 = 0.

From this and (∗) we get a20bt+1a
2t+1
0 = 0. As a2+v

0 bt+1a
2t−v
0 ∈ Cent(R) for

every v ≤ 2t, we get

0=(a20bt+1a
2t
0 )a0=a0(a

2
0bt+1a

2t
0 )=a30bt+1a

2t
0 = · · ·=a2t+2

0 bt+1a0=a2t+3
0 bt+1,

as needed. □

Theorem 2.15. Every π-CN-ring is a McCoy ring.
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Proof. We prove the right McCoy property, the left case is similar. Suppose
that f(x), g(x) ∈ R[x] with f(x)g(x) = 0 and g(x) ̸= 0. We will show, by
induction on the degree of f(x), that there is some non-zero element in Ig(x)
which annihilates f(x) on the right, where Ig(x) denotes the ideal generated by

the coefficients of g(x). Assume that f(x) =
∑m

i=0 aix
i and g(x) =

∑n
j=0 bjx

j

with b0 ̸= 0.
If deg(f(x)) = 0, then the claim is trivial since f(x)b0 = 0. So the base case

of our induction is established. Now, suppose deg(f(x)) > 0.
Case 1: If a0g(x) = 0, then we set f1(x) = (f(x)−a0)/x and get f1(x)g(x) =

0. But deg(f1(x)) < deg(f(x)), and hence by induction there exists a non-zero
element c ∈ Ig(x) satisfying f1(x)c = 0, whence f(x)c = 0.

Case 2: If a0g(x) ̸= 0, then we get three subcases:
(i) g(x) ∈ Nil(R[x]). As R is a 2-primal ring there exists an integer t min-

imal with respect that bi1bi2 · · · bit = 0, where bi1 , bi2 , . . . , bit are arbitrary
elements of Cg. So there exist bj1 , bj2 , . . . , bjt−2

∈ Cg, such that g1(x) =
g(x)bj1 · · · bjt−2

̸= 0. Clearly any coefficient of g1(x) is a nilpotent element
with nilpotancy index 2 and hence g1(x) ∈ Cent(R[x]). As f(x)g(x) = 0, by

Lemma 2.35, there exists an integer l such that al0g1(x) = 0 ̸= al−1
0 g1(x). As

g1(x) ∈ Cent(R[x]) we get g1(x)a
l−1
0 = al−1

0 g1(x) ̸= 0. Put g2(x) = g1(x)a
l−1
0 ,

then from a0g2(x) and f(x)g2(x) = 0 we get x(a1+a2x+· · ·+amxm−1)g2(x) = 0
and so (a1+a2x+· · ·+amxm−1)g2(x) = 0. But deg(a1+a2x+· · ·+amxm−1) <
deg(f(x)), and hence by induction there exists a non-zero element c ∈ Ig2(x) ≤
Ig(x) satisfying (a1 + a2x+ · · ·+ amxm−1)c = 0, whence f(x)c = 0.

(ii) g(x) ̸∈ Nil(R[x]) and g(x)Cf(x) ̸= 0. Then there exists ar ∈ Cf(x) such
that g(x)ar ̸= 0. Put g3(x) = g(x)ar, then g3(x) ∈ Nil(R[x]) and so we reduce
to the case (i).

(iii) g(x) ̸∈ Nil(R[x]) and bjf(x) = 0 for every 0 ≤ j ≤ n. As a0g(x) ̸= 0,
there exists an integer 0 ≤ v ≤ n such that a0bv ̸= 0. From g(x)ai = 0 for
every 0 ≤ i ≤ m, we get (a0bv)

2 = 0 and since R is a π-CN-ring, we get
a0bv ∈ Cent(R) ⊆ Cent(R[x]). Since a0bvf(x) = 0 we get f(x)a0bv = 0 and
a0bv ∈ Ig(x), as desired. □

A ring R is called right zip if for every X ⊆ R, rR(X) = 0 implies that
rR(Y ) = 0 for a finite subset Y ⊆ X. Zelmanowitz [33] showed that any ring
satisfying the descending chain condition on right annihilators is right zip, and
he also showed that there exist commutative zip rings which do not satisfy the
descending chain condition on (right) annihilators. Faith [10], proved that if a
ring R is commutative zip and G is a finite abelian group, then the group ring
R[G] is zip. Cedó [6] shows that the right zip property is not preserved under
the construction of polynomial rings, matrix rings and also the group rings of
a finite group. Hashemi [14] showed that when R is a right McCoy ring, then
R[x] is right zip if and only if R is right zip. Also in [18], several extensions of
rings with zip property were studied.
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Corollary 2.16. Let R be a π-CN-ring. Then R is a zip ring if and only if
R[x] is a zip ring.

Theorem 2.17. Let R be a right zip ring. Then R is right McCoy and strongly
right AB if and only if R[x] is strongly right AB.

Proof. (⇒) Assume on the contrary that X ⊆ R[x] with rR[x](X) ̸= 0 but
rR[x](XR[x]) = 0. As R is right zip right McCoy, R[x] is a right zip ring. So
there exists a finite subset {f1, . . . , fn} ofXR[x] such that rR[x]({f1, . . . , fn}) =
0. Note that fi =

∑ni

j=1 g
i
jh

i
j , 1 ≤ i ≤ n, where gij ∈ X and hi

j ∈ R[x]. Put

Y = {gij | 1 ≤ i ≤ n, 1 ≤ j ≤ ni}. Then rR[x](Y ) ̸= 0 and the McCoy condition
guarantee that rR(CY ) ̸= 0. As R is strongly right AB we get rR(CY R) ̸= 0.
Thus rR(Y R) ̸= 0 and so rR(Y R[x]) ̸= 0. As {f1, . . . , fn} ⊆ Y R[x] we get
rR[x]({f1, . . . , fn}) ̸= 0, being a contradiction. Hence R[x] is strongly right
AB.

(⇐) Clearly, R is strongly right AB. To prove it is right McCoy, assume
that f(x)g(x) = 0, where f(x), g(x) are nonzero elements of R[x]. As R[x] is
strongly right AB, we get rR[x](f(x)R[x]) ̸= 0. By [16, Theorem 2.2], we get
that rR(f) ̸= 0, i.e., R is a right McCoy ring. □

Corollary 2.18. Let R be a right zip π-CN-ring. Then R[x] is strongly right
AB.

Proposition 2.19. A ring R is right zip, right McCoy and strongly right AB
if and only if R[x] is strongly right AB right zip.

Proof. (⇒) As R is a right McCoy right zip ring, then R[x] is a right zip ring.
Also R[x] is strongly right AB by Theorem 2.17.

(⇐) Since R[x] is a right zip ring, we get R is a right zip ring and using
Theorem 2.17, it implies that R is a right McCoy strongly right AB ring. □

According to Fields [12, Theorem 5], if R is a commutative Noetherian
ring with identity in which (0) = Q1 ∩ Q2 ∩ · · · ∩ Qn is a shortest primary
representation of (0) with

√
Qi = Pi, then f(x) =

∑∞
i=0 aix

i ∈ R[[x]] is a zero-
divisor in R[[x]] if and only if there is a non-zero element r ∈ R which satisfies
rf(x) = 0. In the following theorem, we extend this result to noncommutative
rings.

Theorem 2.20. Let R be a π-CN-ring. If Nil(R) is Noetherian as a right
R-module, then R is a power series-wise McCoy ring.

Proof. We prove the right McCoy property, the left case is similar. First notice
that Nil(R) is a nilpotent ideal of the ring R and then there exists an integer t
such that (Nil(R))t = 0 but (Nil(R))t−1 ̸= 0. Now, let f(x) =

∑∞
i=0 aix

i and
g(x) =

∑∞
j=0 bjx

j be non-zero elements in R[[x]] such that f(x)g(x) = 0. We

can assume that b0 ̸= 0. If f(x) ∈ Nil(R[[x]]), there clearly f(x)c = 0, where
0 ̸= c ∈ (Nil(R))t−1. So assume f(x) ̸∈ Nil(R)[[x]]. We get two cases:
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Case 1: g(x) ̸∈ Nil(R[[x]]). As Nil(R) is Noetherian as a right R-module,
it is a nilpotent ideal of R and so Nil(R)[[x]] = Nil(R[[x]]). Hence g(x) ̸∈
Nil(R)[[x]] and so there exists a minimal prime ideal P of R such that g(x) ̸∈
P [[x]]. We claim that f(x) ∈ P [[x]]. Otherwise, there exist integers am ∈ Cf(x),
bn ∈ Cg(x) such that am ̸∈ P and bn ̸∈ P , but ai ∈ P , bj ∈ P for every i < m,
j < n. From f(x)g(x) = 0 we get

am+nb0 + · · ·+ ambn + · · ·+ a0bm+n = 0.

Thus

−ambn = am+nb0 + · · ·+ am−1bn + ambn−1 + · · ·+ a0bm+n ∈ P.

As in 2-primal rings, any minimal prime ideal is a completely prime ideal,
we must have either am ∈ P or bn ∈ P , being a contradiction. So f(x) ∈
P [[x]]. Consider 0 ̸= q ∈

⋂
Q, where Q is a prime ideal of R with Q ̸=

P . Then there exists an integer k minimal with respect that (Pq)k = 0. If
q(Pq)k−1 ̸= 0, then f(x)c1 = 0, where 0 ̸= c1 ∈ q(Pq)k−1. If q(Pq)k−1 = 0,
then (Pq)k−1q = 0, because ((Pq)k−1)2 = 0 and so (Pq)k−1 ∈ Cent(R). If
q(Pq)k−2q ̸= 0, then from (Pq)k−1q = 0 we get f(x)c2 = 0, where 0 ̸= c2 ∈
q(Pq)k−2q. If q(Pq)k−2q = 0, then (Pq)k−2q2 = 0, because ((Pq)k−2q)2 = 0
and so (Pq)k−2q ∈ Cent(R). Continuing in this way there exists a nonzero
element r ∈ R such that f(x)r = 0.

Case 2: g(x) ∈ Nil(R[[x]]). As Nil(R[[x]]) = Nil(R)[[x]] we get Cg(x) ⊆
Nil(R). As Nil(R) is a nilpotent ideal of R, there exists an integer s such
that g(x)(Nil(R))s = 0 ̸= g(x)(Nil(R))s−1. Put h(x) = g(x)d, where d ∈
(Nil(R))s−1 such that h(x) = g(x)d ̸= 0. Clearly f(x)h(x) = 0 and any
element in Ch(x) has the nilpotancy index 2 and so h(x) ∈ Cent(R[[x]]). Put

h(x) =
∑∞

j=0 cjx
j . As f(x)h(x) = 0 we get aicj ∈ Nil(R) for every i, j ∈

{0, 1, 2, . . .}. Hence

a0c1R ⊆ a0c1R+ a1c0R ⊆ a0c1R+ a1c0R+ a2c0R ⊆ · · · .

As Nil(R) is Noetherian as right R-module, there are integers m,n such that

(∗1)
∞∑
i=0

∞∑
j=0

aicjR =

n∑
i=0

m∑
j=0

aicjR.

Again as Nil(R) is Noetherian as a right R-module, there exists an integer k
such that the right ideal of R generated by the set {c0, c1, . . . , ck} is equal to
right ideal of R generated by Ch(x). Hence

(∗2) lR(h(x)) = lR({c0, c1, . . . , ck}).

Note that for every i, j ∈ {0, 1, 2, . . .}, since c2j = 0 we get (aicj)
2 = a2i c

2
j = 0

and so aicj ∈ Cent(R). Now from the equation f(x)h(x) = 0 we get

a0c0 = 0,(1)

a0c1 + a1c0 = 0,(2)
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a0c2 + a1c1 + a2c0 = 0,(3)
...

a0cm+n+k + a1cm+n+k−1 + · · ·+ am+n+kc0 = 0.(4)

Multiplying the equation (2) on the right side by a0 and using the fact that
cj ∈ Cent(R), j = 0, 1, . . ., we get

0 = a0c1a0 + a1c0a0 = a20c1 + a1a0c0 = a20c1.

Multiplying the equation (3) on the right side by a20 and using the fact that
cj ∈ Cent(R), j = 0, 1, . . ., we get

0 = a0c2a
2
0 + a1c1a

2
0 + a2c0a

2
0 = a30c2.

Continuing in this way there exists an integer l0 such that al0+1
0 (c0+c1x+ · · ·+

cm+n+kx
m+n+k) = 0 ̸= al00 (c0 + c1x + · · · + cm+nx

m+n) = (c0 + c1x + · · · +
cm+n+kx

m+n+k)al00 . Since h(x) is central in R[[x]], we get al00 h(x) = h(x)al00 ̸=
0. By (∗), a0h(x)al00 = al0+1

0 h(x) = 0. From this and f(x)h(x)al00 = 0 we must

have x(a1 + a2x+ · · · )h(x)al00 = 0 and hence

(∗3) (a1 + a2x+ · · · )h(x)al00 = 0.

By similar arguments as above, there exists an integer l1 such that al1+1
1 h(x)al00

= 0 ̸= al11 h(x)a
l0
0 = h(x)al00 a

l1
1 . From this and (∗3) we get (a2 + a3x +

· · · )h(x)al00 a
l1
1 = 0. Continuing in this way there are integers l0, l1, . . . , lm+n+k

such that

h(x)al00 a
l1
1 · · · alm+n+k

m+n+k ̸= 0 = aih(x)a
l0
0 a

l1
1 · · · alm+n+k

m+n+k, ∀ 0 ≤ i ≤ m+ n+ k.

Put r = al00 a
l1
1 · · · alm+n+k

m+n+k. From this and using aicj ∈ Cent(R), we get
aicjRr = Raicjr = 0 for every 0 ≤ i, j ≤ m+ n+ k. So

m+n+k∑
i=0

m+n+k∑
j=0

aicjRr = 0

and by (∗1) we obtain that

∞∑
i=0

∞∑
j=0

aicjRr = 0.

Thus f(x)cjr = 0 for every j = 0, 1, . . .. As h(x)r ̸= 0, there exists an integer
p such that cpr ̸= 0, while f(x)cpr = 0, which implying that R is a right power
series McCoy ring. □

Corollary 2.21. Let R be a right Noetherian π-CN-ring. Then R is a power
series-wise McCoy ring.
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Let R be a ring and α denotes an endomorphism of R with α(1) = 1. Let

Tn(R,α) = {(aij)n×n | aij ∈ R, aij = 0 if i > j}.

For (aij), (bij) ∈ Tn(R,α) define,

(aij) + (bij) = (aij + bij) and (aij) ∗ (bij) = (cij),

where cij = 0 for i > j and cij =
∑j

k=i aikα
k−i(bkj) for i ≤ j. It can be easily

checked that Tn(R,α) is a ring, called the skew triangular matrix ring over R.
If α is the identity, Tn(R,α) is the triangular matrix ring Tn(R).

The subring of the skew triangular matrices with constant main diagonal is
denoted by S(R,n, α); and the subring of the skew triangular matrices with
constant diagonals is denoted by T (R,n, α). We can denote A = (aij) ∈
T (R,n, α) by (a11, . . . , a1n). Then T (R,n, α) is a ring with addition point-wise
and multiplication given by:

(a0, . . . , an−1)(b0, . . . , bn−1) = (a0b0, a0∗b1+a1∗b0, . . . , a0∗bn−1+· · ·+an−1∗b0)

with ai ∗ bj = aiσ
i(bj) for each i and j. Also, there exists a ring isomorphism

φ : R[x;α]/⟨xn⟩ −→ T (R,n, σ)

such that φ(a0 + a1x+ · · ·+ an−1x
n−1 + ⟨xn⟩) = (a0, . . . , an−1). Therefore,

T (R,n, α) ∼= R[x;α]/⟨xn⟩,

where ⟨xn⟩ is the ideal generated by xn in R[x;α], (see [7]).

Example 2.22. LetR be a commutative reduced ring. If α is an automorphism
of R such that α2 = id, then T (R, 3, α) is a π-CN-ring.

Proof. As R is a reduced ring,

Nil(T (R, 3, α)) =


 0 a2 a3

0 0 a2
0 0 0

 | a1, a2 ∈ R

 .

As α2 = id, we get
 0 0 a2

0 0 0
0 0 0

 | a2 ∈ R

 ⊆ Cent(T (R, 3, α)).

Note that for any nonzero element A =
(

0 c2 c3
0 0 c2
0 0 0

)
∈ Nil(T (R, 3, α)), if c2 = 0,

then A ∈ Cent(T (R, 3, α)). If a2 ̸= 0, then 0 ̸= A2 ∈ Cent(T (R, 3, α)), which
implies that T (R, 3, α) is a π-CN-ring. □

Corollary 2.23. Let R be a commutative Noetherian reduced ring. If α is an
automorphism of R such that α2 = id, then T (R, 3, α) is a power series-wise
McCoy ring.

Proof. Apply Theorem 2.21 and Example 2.22. □
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Example 2.24. Let R be a ring, n ≥ 4. Then the following statements are
equivalent:

(1) R is commutative and α = id;
(2) T (R,n, α) is commutative;
(3) T (R,n, α) is a π-CN-ring;
(4) R[x;α]/⟨xn⟩ is a π-CN-ring.

Proof. (1) ⇒ (2) ⇒ (3) are clear. (3) ⇒ (1) Assume that r ∈ R. Then
(0, . . . , 0, r)2 = 0. As T (R,n, σ) is a π-CN-ring, we get

(0, . . . , 0, r) ∈ Cent(T (R,n, σ)),

and so (0, . . . , 0, 1)(s, 0, . . . , 0) = (s, 0, . . . , 0)(0, . . . , 0, 1) for every s ∈ R. So
we get σn−1(s) = s for every s ∈ R. As (0, . . . , 0, 1, 0)2 = 0 and T (R,n, α) is a
π-CN-ring, we get (0, . . . , 0, 1, 0) ∈ Cent(T (R,n, σ)), and so

(0, . . . , 0, 1, 0)(s, 0, . . . , 0) = (s, 0, . . . , 0)(0, . . . , 0, 1, 0).

This implies that αn−2(s) = s for every s ∈ R. Since αn−2(s) = αn−1(s) = s
for every s ∈ S we get α = id. □

According to Krempa [22], an endomorphism α of a ring R is said to be
rigid if aα(a) = 0 implies a = 0 for a ∈ R. By [13], for each ring R with an α
rigid endomorphism of R, the ring T (R,n, α) is a reversible ring and hence is
a McCoy ring which is not π-CN.

2.2. π-Duo rings

We present and analyse the notion of π-duo rings as a generalization of duo
rings in the current research, which is driven by the foregoing discussion, and
prove that π-duo rings are 2-primal. Our primary finding is that π-duo rings
are McCoy and abelian at the same time. When R is a one-sided π-duo ring,
we show that R is reduced only if R is nonsingular. Furthermore, we elaborate
on the fact that a right π-duo ring R has the right property (A) provided that
either of the following requirements are met:

• every prime ideal of R is maximal.
• R is right weakly continuous.
• R is right FI-extending with ACC on direct summands.
A ring R is defined as a duo ring by [11] if each one-sided ideal of R is a

two-sided ideal. If all of right (resp., left) ideals of a ring are two-sided, the
term right duo is preferred (resp., left duo). Recall that a ring R is called left
π-duo if for every r ∈ R, there exists a natural number n(r) (depending on r)
such that the principal left ideal Rrn(r) is two-sided. Yao [29] proved that left
π-duo rings are abelian, which extends the older result of Courter [8, Theorem
1.3] for left or right duo rings.

Definition 2.25. We say a ring R is left π-duo if for every 0 ̸= a ∈ R, there
exists a positive integer k for which 0 ̸= akR ⊆ Rak. The definition of a right
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π-duo ring is quite the same. If a ring is both left and right π-duo, it is called
π-duo.

Duo rings are definitely π-duo, the examples provided below indicates that
the classification of π-duo rings clearly encompasses duo rings.

Example 2.26. Assume that A = Z2⟨u, v⟩ is the free algebra generated by
noncommuting indeterminates x, y over Z2 and assume that

R := A/I, where I is an ideal of A generated by the set {u3, v3, uv, vu2, v2u}.
We will show that R is a π-duo ring. To reach this conclusion, it is initially
determined that any element of R is the form γ = a0+a1u+a2v+a3u

2+a4v
2+

a5vu, in which ai ∈ Z2, 1 ≤ i ≤ 5. Therefore, it is evident that is u2, v2 and vu
represent the R center. Now consider the element γ = a0 + a1u+ a2v+ a3u

2 +
a4v

2+a5vu of R. If a1 = a2 = 0, then clearly γ is in the center of R and there is
nothing to prove. If a1 ̸= 0 or a2 ̸= 0, then 0 ̸= γ2 = a20+a21u

2+a22v
2+a2a1vu,

which implies that γ2 is in the center of R. Therefore R is a π-duo ring.
Now consider Rv = {0, v, v2, v + v2}, vR = {0, v, v2, vu, v + v2, v + vu, v2 +

vu, v + v2 + vu}, Ru = {0, u, u2, vu, u + u2, u + vu, u2 + vu, u + u2 + vu} and
uR = {0, u, u2, u + u2}. We have vR ⊈ Rv and Ru ⊈ uR. This shows that R
is not a duo ring.

Example 2.27. Consider the ring in Example 2.26, A = Z2⟨u, v⟩ be the free
algebra generated by noncommuting indeterminates x, y over Z2 and assume
that

R = A/I, where I is an ideal of A generated by the set {u3, v3, uv, vu2, v2u}.
We claim that R[x] is a π-duo ring. For, assume that f(x) = γ0+γ1(x)+ · · ·+
γkx

k ∈ R[x]. Then

f(x)2 = γ2
0 + (γ1γ0 + γ0γ1)x+ (γ0γ2 + γ2

1 + γ2γ0)x
2 + · · ·+ γ2

kx
2k.

We will show that for any γi, γj ∈ R we get γiγj + γjγi ∈ Cent(R). Put
γi = ai0 + ai1u + ai2v + ai3u

2 + ai4v
2 + ai5vu and γj = aj0 + aj1u + aj2v +

aj3u
2 + aj4v

2 + aj5vu. Then we get

γiγj + γjγi = (ai0aj0 + aj0ai0) + (ai0aj1 + ai1aj0 + aj0ai1 + aj1ai0)u

+ (ai0aj2 + ai2aj0 + aj0ai2 + aj2ai0)v

+ (ai0aj3 + ai3aj0 + aj0ai3 + aj3ai0 + ai1aj1 + aj1ai1)u
2

+ (ai2aj2 + ai0aj4 + ai4aj0 + aj2ai2 + aj0ai4 + aj4ai0)v
2

+ (ai0aj5 + ai5aj0 + ai2aj1 + aj2ai1 + aj0ai5 + aj5ai0)vu

= 2ai0aj0 + (2ai0aj1 + 2ai1aj0)u+ (2ai0aj2 + 2ai2aj0)v

+ (2ai0aj3 + 2ai3aj0 + 2ai1aj1)u
2

+ (2ai2aj2 + 2ai0aj4 + 2ai4aj0)v
2

+ (2ai0aj5 + 2ai5aj0 + ai2aj1 + aj2ai1)vu
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= (ai2aj1 + aj2ai1)vu ∈ Cent(R).

So γiγj + γjγi ∈ Cent(R) for 0 ≤ i, j ≤ k. As γ2
i = a2i0 + a2i1u

2 + a2i2v
2 +

ai2ai1vu ∈ Cent(R), therefore

f(x)2 ∈ Cent(R)[x] ⊆ Cent(R[x]).

Recall from that a ring R is called left (right) quasi-duo if every maximal left
(right) ideal of R is two-sided. By [30] it is immediately observed that every
factor ring R/I of a left quasi-duo ring R is again left quasi-duo. It is obvious
that if R is a commutative ring and n ≥ 2, then the ring of upper triangular
n× n matrices over R is left quasi-duo.

Proposition 2.28. Every π-duo ring is quasi-duo.

Proof. Assume that M is a maximal right ideal of R. Assume on the contrary
that RM ⊈ M . Then there exists r ∈ R such that rM ⊈ M . So we get
rM + M = R. It follows that rm + n = 1 for some m,n ∈ M . As R is a
π-duo ring, there exists an integer k such that (mr)kR = R(mr)k. Multiplying
rm+n = 1 on the right side by (rm)k we get r(mr)km+n(rm)k = (rm)k. As
(mr)kR = R(mr)k, there exists s ∈ R such that r(mr)k = (mr)ks ∈ M . So
r(mr)km+ n(rm)k ∈ M which implies that (rm)k ∈ M .

Now, multiplying rm+ n = 1 on the right side by (rm)k−1 we get (rm)k +
n(rm)k−1 = (rm)k−1 implies that (rm)k−1 ∈ M . Continuing in this way yields
that rm ∈ M , and so rm + n ∈ M , contradiction to rm + n = 1 ∈ M . Hence
RM ⊈ M , i.e., R is a right quasi-duo. By a similar way we obtain that R is a
left quasi-duo ring. □

Bass [2] proved that a left perfect ring R has the property that every left R-
module has a maximal submodule and R contains no infinite set of orthogonal
idempotents, and asked if the converse holds also. As a corollary of [30, Theo-
rem 3.3], we get:

Corollary 2.29. For a π-duo ring R, the following are equivalent:
(1) R is left perfect;
(2) R contains no infinite set of orthogonal idempotents and every left R-

module has a maximal submodule.

Theorem 2.30. Let R be a π-duo ring. Then W (R) = Nil∗(R) = L-rad(R) =
Nil∗(R) = Nil(R).

Proof. Since W (R) ⊆ Nil∗(R) ⊆ L-rad(R) ⊆ Nil∗(R) ⊆ Nil(R), it is enough
to show that W (R) = Nil(R). Initially and with b2 = 0 and R as a π-duo ring,
the most likely outcomes will Rb ⊆ bR and so bRb ⊆ b2R = 0 thereby leading
(bR)2 = (Rb)2 = 0. Following that and with bk = 0 and k ≥ 3, we will have

(∗) Rbk−1b = 0.
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As (bk−1)2 = 0, the likely outcomes will be bk−1R ⊆ Rbk−1 and (∗) leads to
bk−1Rb = 0, followed by

(∗∗) bbk−2RbR = 0.

The most likely outcome here will be (bk−2Rb)2 = 0, and R as π-duo leads to
Rbk−2Rb ⊆ bk−2RbR. With (∗∗) we will obtain

(∗ ∗ ∗) bRbk−2RbR = bRbbk−3RbR = 0.

Considering (bk−3Rb)2=0, the most likely outcome will be Rbk−3Rb⊆bk−3RbR
and (∗ ∗ ∗) gives us 0 = (bR)2bk−3RbR = (bR)2bk−4bRbR = (bR)2bk−4(bR)2.
As ((bR)2bk−4)2 = 0 the most likely outcome will be (bR)2bk−4R = R(bR)2bk−4

and 0 = (bR)2bk−4(bR)2 = (bR)2bk−4R(bR)2 = (bR)2bk−5(bR)3. Since we have
bk−6(bR)2bbk−6(bR)2b ⊆ bk−6(bR)2bk−5(bR)3 = 0, we obtain Rbk−6(bR)2b =
bk−6(bR)3 followed by 0=(bR)2bk−5(bR)3=(bR)2bbk−6(bR)3=(bR)3bk−6(bR)3.
If we proceed the same process, we get (bR)k = 0, which renders W (R) =
Nil(R). □

Corollary 2.31. If R is a π-duo ring, then Nil(R)[x] = Nil(R[x]).

Proposition 2.32. Every left π-duo ring is abelian.

Proof. If we consider e an idempotent of R, for each r ∈ R, there exists s ∈ R
such that er = se and so er = ere. In the presence of (1 − e)R ⊆ R(1 − e),
there exists t ∈ R such that (1− e)r = t(1− e), which will result in (1− e)r =
(1 − e)r(1 − e) for every r ∈ R. Here, the most likely outcome would be
0 = (1− e)re, indicating re = ere for every r ∈ R. So er = ere = re for every
r ∈ R. □

Proposition 2.33. Right π-duo nonsingular rings are reduced.

Proof. Considering a ∈ R such that a2 = 0, we have (Ra)2 = 0. Following that,
rR(aR) would be regarded as the essential right ideal of R. If 0 ̸= b ∈ R, the
probable integer k will be associated with 0 ̸= Rbk ⊆ bkR for the right π-duo
condition. If aRbkR ̸= 0 will give us aRbkR ⊆ rR(aR). If we consider arbk to
be a nonzero element of aRbkR, the most likely outcome will be arbk = bkc,
where c ∈ R, thereby leading to 0 ̸= bkcR ⊆ rR(aR) and rR(aR) is an essential
right ideal of R. However, the nonsingularity of R would give us aR = 0 and
the subsequent a = 0, rendering R a reduced ring. □

Lemma 2.34. Every minimal left ideal of a left π-duo ring is an ideal.

Proof. If we consider L as minimal left ideal of R, we would reach L = Ra for
every non-zero element a of L. Since R is a left π-duo ring, there exists an
integer k for which 0 ̸= akR ⊆ Rak. As L = Rak, there exists r ∈ R such that
rak = a. Hence aR = rakR ⊆ rRak ⊆ Rak = L, which implies that LR ≤ L,
as needed. □
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Lemma 2.35. Let R be a left π-duo ring. Then for each f(x) =
∑m

i=0 aix
i,

g(x) =
∑n

j=0 bjx
j with f(x)g(x) = 0, there exists an integer k such that

a
(j+1)k
0 bj = 0 for all 0 ≤ j ≤ n.

Proof. We may assume that a0 ̸= 0. Hence there exists an integer k for which
ak0R ⊆ Rak0 ̸= 0, as R is left π-duo. If k ≥ 2, the f(x)g(x) = 0 equation may
lead to the following outcomes:

a0b0 = 0,(1)

a0b1 + a1b0 = 0,(2)
...

a0bt + a1bt−1 + · · ·+ atb0 = 0.(3)

Multiplying equation (2) on the left side by ak0 , we will obtain ak+1
0 b1+ak0a1b0 =

0. In the presence of ak0a1 ∈ Rak0 , the most likely outcome will be ak0a1b0 = 0

and the subsequent ak+1
0 b1 = 0. In the case of k ≥ 2, 2k ≥ k + 1 the outcome

will be a2k0 b1 = 0.

By induction assume that a
(j+1)k
0 bj = 0 for every 0 ≤ j < t. Especially

atk0 bj = 0 for every 0 ≤ j ≤ t − 1 and hence atk0 Rbj ⊆ a
(t−1)k
0 Rak0bj ⊆

a
(t−2)k
0 Ra2k0 bj ⊆ · · · ⊆ Ratk0 bj = 0 for every 0 ≤ j ≤ t−1. Multiplying equation

(3) on the left side by atk0 we get atk0 atb0 + · · · + atk0 a1bt−1 + atk0 a0bt = 0. It

follows that atk0 a0bt = 0, which implies that a
(t+1)k
0 bt = 0. This finishes our

inductive step and so the proof is complete. □

Lemma 2.36. Let R be a right π-duo ring. Then for each f(x) =
∑m

i=0 aix
i,

g(x) =
∑n

j=0 bjx
j with f(x)g(x) = 0, there exists an integer s such that

aib
(i+1)s
0 = 0 for all 0 ≤ i ≤ m.

Proof. It is similar to the one of Lemma 2.35. □

According to Camillo and Nielsen [5], duo rings are classified as McCoy,
while they also state that McCoy rings are not abelian in all the cases. In
this paper, proof is presented on the fact that the π-duo rings in Proposition
2.32 are abelian. Moreover, Nielsen demonstrated that reversible rings are
McCoy [28, Theorem 2], elaborating on the subject with an example of a semi-
commutative ring as an incorrect McCoy ring although semi-commutative rings
are classified as abelian and 2-primal. In the following sections, π-duo rings
have been shown to be McCoy as well in the primary results. Therefore, it
could be inferred that π-duo rings are abelian and McCoy.

A ring R is said to be strongly right McCoy provided that f(x)g(x) = 0
implies f(x)r = 0 for some nonzero r in the right ideal of R generated by
the coefficients of g(x), where f(x) and g(x) are nonzero polynomials in R[x].
Strongly left McCoy rings are defined similarly. If a ring is both strongly left
and strongly right McCoy, then the ring is called a strongly McCoy ring.



1250 R. MOHAMMADI, A. MOUSSAVI, AND M. ZAHIRI

Theorem 2.37. π-duo rings are strongly McCoy.

Proof. We only proof the right case, the left case is similar. With the as-
sumption that f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈ R[x] with f(x)g(x) = 0

and g(x) ̸= 0. We will show, by induction on the degree of f(x), that there
is some non-zero element in Ig(x), which annihilates f(x) on the right, where
Ig(x) representing the right ideal obtained from coefficients of g(x). Assume

that f(x) =
∑m

i=0 aix
i and g(x) =

∑n
j=0 bjx

j , as well as b0 ̸= 0. In the case of

deg(f(x)) = 0, f(x)b0 = 0 will render the claim is trivial.
The next case is deg(f(x)) > 0.
Case 1: If a0g(x) = 0, put f1(x) = (f(x)−a0)/x which gives us f1(x)g(x) =

0. But deg(f1(x)) < deg(f(x)), and hence by induction there exists a non-zero
element c ∈ Ig(x) satisfying f1(x)c = 0, whence f(x)c = 0.

Case 2: If a0g(x) ̸= 0, then there exists a minimal integer 1 ≤ v ≤ n such
that a0bv ̸= 0. As R is π-duo, there exists an integer sv such that 0 ̸= bsvv R =
Rbsvv . Put g1(x) = g(x)bsv−1

v . Then g1(x) ̸= 0 and f(x)g1(x) = 0. We claim
that there exists r ∈ R such that g1(x)r ̸= 0 and a0b

sv
v r = 0. We may assume

that a0b
sv
v ̸= 0.

By Lemma 2.35, there exists an integer k such that ak0b
sv
v = 0 ̸= ak−1

0 bsvv . As

Rbsvv = bsvv R, there exists an element rv such that 0 ̸= ak−1
0 bsvv = bsvv rv. Put

g′1(x) = g(x)bsv−1
v rv. Then g′1(x) ̸= 0 and Ig1(x)′ ⊆ Ig(x) and a0 annihilates the

first v coefficients of g′1(x), so after repeating this process a finite number of
times we reduce to the previous case. □

2.3. Property (A)

Lucas claims that a commutative ring R satisfies property (A) if any of the
finitely generated ideals of R consisting entirely of zero divisors has a nonzero
annihilator [25]. Numerous scholars have examined rings with property (A),
including ([1,15,25,31] etc.), proposing a number of results that are considered
significant in researching commutative rings with zero divisors. The concept of
property (A) also encompasses non-commutative rings based on the investiga-
tions conducted by C. Y. Hong, N. K. Kim, Y. Lee, and S. J. Ryu [19].

Definition 2.38 (see [19]). Right (left) property (A) apply to any ring R
provided that a nonzero a ∈ R (resp. b ∈ R) is achieved for each finitely
generated two-sided I ⊆ Zl(R) (resp. I ⊆ Zr(R)), which will likely result Ia = 0
(resp. bI = 0), with Zl(R) (resp. Zr(R)) representing the set of left (resp. right)
of R zero-divisors. If a ring R possesses both left and right property (A), the
presence of property (A) is confirmed.

A ring R is called strongly right (resp. left) AB if every non-zero right
(resp. left) annihilator of R is bounded; R is called strongly AB if R is strongly
right and strongly left AB.

Proposition 2.39. Left π-duo rings are strongly right AB.
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Proof. Let R be a π-duo ring and assume that X ⊆ R such that rR(X) ̸= 0.
Then for every 0 ̸= a ∈ rR(X), there exists an integer k such that 0 ̸= Rak ≤
akR. As XakR = 0 we get XRak = 0 and so the nonzero ideal RakR is
contained in rR(X). □

Corollary 2.40. If R is a π-duo ring, then R[x] has property (A).

Proof. It is an immediate consequence of [32, Theorem 3.7] and Lemmas 2.37,
2.39. □

A ring R is right FI-extending if every (ideal) right ideal of R is essential
in a right ideal generated by an idempotent.

Theorem 2.41. Let R be a right FI-extending ring with ACC on direct sum-
mands. If R is a π-duo ring, then R has right property (A).

Proof. Assuming I =
∑k

i=1 RaiR ⊆ Zl(R), with R classified as right FI-
extending, there exists a direct summand eR of R such that I ≤es eR. In
the case of e ̸= 1, we will have I(1 − e) = 0. Mean while, e = 1 will give
us I ≤es R. When R corresponds to the ACC on direct summands, the most
likely outcome will be primitive idempotents fj , 1 ≤ j ≤ t, which are associated

with R =
∑t

j=1 Rfj and result in I =
∑t

j=1 Ifj , and the subsequent outcome
will be Ifj ≤es Rfj in all cases of 1 ≤ j ≤ t. With R classified as π-duo, the
result will be fj ∈ Cent(R) in all the cases of 1 ≤ t, thereby rendering Rfj
a right FI-extending and indecomposable ring in the all cases of 1 ≤ j ≤ t,
which is followed by uniform Rfj as the left R-module in every possible case
of 1 ≤ j ≤ t.

We claim that there exists an integer 1 ≤ v ≤ t such that Ifv=
∑k

i=1 RaifvR
⊆ Zl(Rfv). By contrary assume that Ifj ̸⊆ Zl(Rfj) for every 1 ≤ j ≤ t. So
for each j, there is a non-zero element rj ∈ Ifi such that rjsj ̸= 0 for every
non-zero sj ∈ Rfj . Assuming r = r1+r2+ · · ·+rt would lead us to the nonzero
element b ∈ R and the subsequent rb = 0, in the case of r ∈ I ⊆ Zl(R). In the
present of b = b1 + b2 + · · · + bt we will have bj ∈ Rfj , as well as 1 ≤ j ≤ t.
From rb = 0 the most likely outcome will be rbfj = rjbj = 0 for each 1 ≤ j ≤ t.
In the case of rj ̸∈ Zl(Rfj), we get bj = 0 for each j, which was identified a
contradiction. Hence there exists 1 ≤ p ≤ t such that Ifp ⊆ Zl(Rfp). Now
assume that aifpbifp = 0, where 0 ̸= bifp, 1 ≤ i ≤ k. In addition Rfp is
classified as a right π-duo ring, which will result in integers si, 1 ≤ i ≤ k
accompanied 0 ̸= Rfpb

si
i ⊆ bsii Rfp. Given the uniform Rfp, which is classified

as the left R-module, most likely outcome will be ∩n
i=1Rfpb

si
i ̸= 0. In the case

of 0 ̸= c ∈ ∩n
i=1Rfpb

si
i followed by Ic = 0, the right property (A) of R is

confirmed. □

Corollary 2.42. Let R be a ring that is π-duo, semiperfect and extending.
Then R has property (A).
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Proposition 2.43. Let R be a ring that is π-duo and left extending with ACC
on essential left ideals. Then R has right property (A).

Proof. Our arguments are inspired by the techniques developed in [31, Propo-
sition 2.5.]. □

Theorem 2.44. Let R be a ring that is π-duo and right weakly continuous.
Then R has right property (A).

Proof. Our arguments are inspired by the techniques developed in [31, Theorem
2.8]. □

Theorem 2.45. Let R be a one sided π-duo ring and assume that every prime
ideal of R is maximal. Then R has property (A).

Proof. Our arguments are inspired by the techniques developed in [31, Theorem
2.18]. □
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