• Title/Summary/Keyword: propulsion test facility

Search Result 227, Processing Time 0.018 seconds

A Study on the Hypersonic Air-breathing Engine Ground Test Facility Composition and Characteristics (극초음속 공기흡입식 추진기관 지상 시험설비의 구성 및 특성에 관한 연구)

  • Lee, Yang-Ji;Kang, Sang-Hun;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.81-90
    • /
    • 2015
  • In order to know the characteristics of the hypersonic air-breahting engine, high altitude and Mach number ground test is necessary. Therefore, high pressure and high temperature condition should be simulated to do ground test of the hypersonic air-breathing engine. In this paper, the hypersonic air-breathing engine ground test facility of the Korea Aerospace Research Institute was introduced and the composition and characteristics were described.

Test Facility Improvement for Hot Firing Test of a 7-tonf Combustor in Sub-scale model (7톤급 연소기 축소형 모델 시험을 위한 설비 개량)

  • Kang, Dong-Hyuk;Lim, Byoung-Jik;Kim, Hyeon-Jun;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.498-501
    • /
    • 2012
  • The Model Rocket Engine Test Facility has been improved to develop the Korea Space Launch Vehicle II(KSLV-II). The modified Model Rocket Engine Test Facility will be used to develop 7-tonf class liquid rocket engine combustor. The test result and test technique acquired from this facility will be used to develop the high performance liquid rocket engine combustor. This paper describes the modified Model Rocket Engine Test Facility for a Sub-scale model test of the 7-tonf class combustor.

  • PDF

Development of Turbo Molecular Pump Vacuum Facility for High Altitude Space Environment Test (고고도 우주환경모사용 터보분자펌프 진공설비 구축)

  • Huh, Hwan-Il;Kim, Min-Jae;Kim, Sung-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.827-829
    • /
    • 2011
  • Vacuum facility is required for high altitude space environment test to develop satellites or space launch vehicles. We, at Chungnam, National University, developed turbo molecular pump vacuum test facility up to $1.0{\times}10-6$ torr to simulate 200 km altitude environment. In this paper, we present some preliminary vacuum performance test results.

  • PDF

Design of the test facility for the supersonic thrust vectoring nozzle (초음속 추력편향 노즐 실험장치 설계)

  • Jeong, Han-Jin;Choi, Seong-Man;Chang, Hyun-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.569-572
    • /
    • 2010
  • In order to study the performance characteristics of the thrust vector nozzle, the test facility and instrumentation system were designed. In this system, axial thrust, moment, exhaust gas velocity and pressure will be measured by using the scale down experimental model devices. The test facility are composed of high pressure air storage system, flow measuring and control system, test nozzle and thrust measurement system.

  • PDF

Conceptual Design of High Altitude Test Facility for Testing Liquid Rocket Engine (액체로켓엔진 고공모사시험설비의 개념설계)

  • Kim, Cheul-Woong;Nam, Chang-Ho;Kim, Seung-Han;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.383-387
    • /
    • 2008
  • To design a high altitude test facility for testing liquid rocket engine optimal technical solutions with general understanding about characteristics of engines and test stands, mission of a rocket and the financial aspects of tests are required. In this paper conditions and requirements needed at the stage of conceptual design of high altitude engine test facility were suggested, and preliminary calculations of the sizes of a supersonic diffuser and volume of cooling water were carried out.

  • PDF

The test facility for propellant feeding system of liquid propulsion system (액체추진기관 추진제 공급계 시험설비)

  • Kwon Oh-Sung;Na Han-Bee;Lee Joong-Youp;Jeong Yong-Gap;Cho Nam-Kyung;Kil Gyoung-Sub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.79-82
    • /
    • 2004
  • Propellant feeding system is the system to satisfy propellant feeding requirements(mass flow rate, pressure, temperature) at engine inlet of launch vehicle. Propellant feeding test facility is being constructed for the development scheme of pressurization system, processing in tank, propellant piping system, and flow control system that are main technologies in order to develope propellant feeding system. This paper introduces the propellant feeding test facility being constructed in KARI.

  • PDF

Design and Manufacture of Storage Air Heater (축열식 가열기의 설계 및 제작)

  • Lee, Yang-Ji;Kang, Sang-Hun;Park, Poo-Min;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.43-46
    • /
    • 2006
  • Storage air heater(SAH) is a general purpose facility that is used to simulate the high altitude condition of supersonic ground test facility, thurst compensation test of rocket engine nozzle and gas turbine engine combustor test. SAH in KARI is built to simulate the total temperature of the supersonic ground test facility which has a wide flight envelope from altitude 0km, Mach 2 to altitude 25km, Mach 5 and operates up to 1300K, 3.5MPa. In this paper, we introduces the SAH in JAXA which is model of SAH in KARI and summarizes the design process and manufacture of ours.

  • PDF

Concept Design of High Altitude Simulation Test Facility (고공환경모사 시험설비 구축을 위한 개념설계)

  • Kim, Sang-Heon;Kim, Yong-Wook;Lee, Jung-Ho;Yu, Byung-Il;Cho, Sang-Yeon;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.75-81
    • /
    • 2006
  • The propulsion system of KSLV-I second stage is engine with high expansion ratio and its starting altitude is high. To verify the performance of engine before the launch in the ground, high altitude test facility to simulate its operating condition is necessary. This material is about the concept design of high altitude simulation test facility for second stage engine. And it will be the basis for the construction of test facility and the test of engine.

  • PDF

Preliminary Design of Test Facility for 75-tonf-Class Liquid Rocket Engine Combustor (75톤급 액체로켓엔진 연소기 시험설비 기본설계)

  • Lim, Byoung-Jik;Seo, Seong-Hyeon;Kim, Mun-Ki;Kang, Dong-Hyuk;Han, Yeong-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.84-91
    • /
    • 2010
  • For the successful development of 75-tonf-class liquid rocket engine, a plenty of tests on each engine component have to be performed and this is equally true for a combustor. However the test facility which is in operation at Korea Aerospace Research Institute lacks its capacity to perform fire tests of a 75 tonf class combustor at its nominal thrust. Since the test facility has to be ready prior to the start of development tests, it is very urgent to establish the test facility. The preliminary design of a test facility for a 75 tonf class combustor which was performed according to such a necessity is described in the paper.

A Computational Study on Cooling Analysis of the Flame Deflector for the 75 tonf Class Propulsion Test Facility (75톤급 추진기관 시험설비 화염유도로 냉각해석에 관한 수치적 연구)

  • Moon, Seong-Mok;Cho, Nam-Kyung;Kim, Seong-Lyong;Jun, Sung-Bok;Lee, Kyoung-Hoon;Kim, Dong-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.55-64
    • /
    • 2015
  • In this study, a 3-D flame cooling analysis is conducted to examine thermal safety for the flame deflector of the 75 tonf class propulsion test facility, and the safe discharge of the exhaust gas is assessed by using numerical results. The Mixture multiphase model is adopted for the simulation of heat transfer and phase exchange process between flame and cooling water, and the computational study using the single species unreacted model for the exhaust plume is carried out for the flame cooling. Numerical analysis predicts maximum temperature on the flame deflector wall for different water flow rates, and evaluates the safe minimum flow rate of water corresponding to the fire-resistant temperature for concrete.