• 제목/요약/키워드: prey-predator system

Search Result 88, Processing Time 0.022 seconds

GLOBAL EXISTENCE OF SOLUTIONS TO THE PREY-PREDATOR SYSTEM WITH A SINGLE CROSS-DIFFUSION

  • Shim, Seong-A
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.443-459
    • /
    • 2006
  • The prey-predator system with a single cross-diffusion pressure is known to possess a local solution with the maximal existence time $T\;{\leq}\;{\infty}$. By obtaining the bounds of $W\array_2^1$-norms of the local solution independent of T we establish the global existence of the solution. And the long-time behaviors of the global solution are analyzed when the diffusion rates $d_1\;and\;d_2$ are sufficiently large.

PERIODIC SOLUTIONS OF A DISCRETE TIME NON-AUTONOMOUS RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH CONTROL

  • Zeng, Zhijun
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.465-474
    • /
    • 2007
  • With the help of the coincidence degree and the related continuation theorem, we explore the existence of at least two periodic solutions of a discrete time non-autonomous ratio-dependent predator-prey system with control. Some easily verifiable sufficient criteria are established for the existence of at least two positive periodic solutions.

PERIODIC SOLUTIONS OF A DISCRETE-TIME NONAUTONOMOUS PREDATOR-PREY SYSTEM WITH THE BEDDINGTON-DEANGELIS FUNCTIONAL RESPONSE

  • Dai, Binxiang;Zou, Jiezhong
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.127-139
    • /
    • 2007
  • In this paper, we investigate a discrete-time non-autonomous predator-prey system with the Beddington-DeAngelis functional response. By using the coincidence degree and the related continuation theorem as well as some priori estimates, easily verifiable sufficient criteria are established for the existence of positive periodic solutions.

ASYMPTOTICAL BEHAVIORS OF A DIFFUSIVE PREDATOR-PREY SYSTEM WITH RATIO-DEPENDENT FUNCTIONAL RESPONSE AND MATURATION DELAY

  • Wonlyul Ko
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.39-53
    • /
    • 2023
  • In this paper, we consider a delayed ratio-dependent predator-prey reaction-diffusion system with homogenous Neumann boundary conditions. We study the existence of nonnegative solutions and the stability of the nonnegative equilibria to the system. In particular, we provide a sufficient condition for the positive equilibrium to be globally asymptotically stable.

BIFURCATION ANALYSIS OF A DELAYED PREDATOR-PREY MODEL OF PREY MIGRATION AND PREDATOR SWITCHING

  • Xu, Changjin;Tang, Xianhua;Liao, Maoxin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.353-373
    • /
    • 2013
  • In this paper, a class of delayed predator-prey models of prey migration and predator switching is considered. By analyzing the associated characteristic transcendental equation, its linear stability is investigated and Hopf bifurcation is demonstrated. Some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulations for justifying the theoretical analysis are also provided. Finally, biological explanations and main conclusions are given.

PREDATOR-PREY IN PATCHY SPACE WITH DIFFUSION

  • Alb, Shaban
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • In this paper we formulate a predator-prey system in two patches in which the per capita migration rate of each species is influenced only by its own density, i.e. there is no response to the density of the other one. Numerical studies show that at a critical value of the bifurcation parameter the system undergoes a Turing bifurcation, i. e. the stable constant steady state loses its stability and spatially non-constant stationary solutions, a pattern emerge.

CONVERGENCE PROPERTIES OF PREDATOR-PREY SYSTEMS WITH FUNCTIONAL RESPONSE

  • Shim, Seong-A
    • Honam Mathematical Journal
    • /
    • v.30 no.3
    • /
    • pp.411-423
    • /
    • 2008
  • In the field of population dynamics and chemical reaction the possibility or the existence of spatially and temporally nonhomogeneous solutions is a very important problem. For last 50 years or so there have been many results on the pattern formation of chemical reaction systems studying reaction systems with or without diffusions to explain instabilities and nonhomogeneous states arising in biological situations. In this paper we study time-dependent properties of a predator-prey system with functional response and give sufficient conditions that guarantee the existence of stable limit cycles.

DYNAMICS OF A RATIO-DEPENDENT PREY-PREDATOR SYSTEM WITH SELECTIVE HARVESTING OF PREDATOR SPECIES

  • Kar Tapan Kumar
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.385-395
    • /
    • 2007
  • The dynamics of a prey-predator system, where predator population has two stages, juvenile and adult with harvesting are modelled by a system of delay differential equation. Our analysis shows that, both the delay and harvesting effort may play a significant role on the stability of the system. Numerical simulations are given to illustrate the results.

Complex Dynamic Behaviors of an Impulsively Controlled Predator-prey System with Watt-type Functional Response

  • Baek, Hunki
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.831-844
    • /
    • 2016
  • In this paper, we consider a discrete predator-prey system with Watt-type functional response and impulsive controls. First, we find sufficient conditions for stability of a prey-free positive periodic solution of the system by using the Floquet theory and then prove the boundedness of the system. In addition, a condition for the permanence of the system is also obtained. Finally, we illustrate some numerical examples to substantiate our theoretical results, and display bifurcation diagrams and trajectories of some solutions of the system via numerical simulations, which show that impulsive controls can give rise to various kinds of dynamic behaviors.

DYNAMIC ANALYSIS OF A PERIODICALLY FORCED HOLLING-TYPE II TWO-PREY ONE-PREDATOR SYSTEM WITH IMPULSIVE CONTROL STRATEGIES

  • Kim, Hye-Kyung;Baek, Hun-Ki
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.225-247
    • /
    • 2010
  • In this paper, we establish a two-competitive-prey and one-predator Holling type II system by introducing a proportional periodic impulsive harvesting for all species and a constant periodic releasing, or immigrating, for the predator at different fixed time. We show the boundedness of the system and find conditions for the local and global stabilities of two-prey-free periodic solutions by using Floquet theory for the impulsive differential equation, small amplitude perturbation skills and comparison techniques. Also, we prove that the system is permanent under some conditions and give sufficient conditions under which one of the two preys is extinct and the remaining two species are permanent. In addition, we take account of the system with seasonality as a periodic forcing term in the intrinsic growth rate of prey population and then find conditions for the stability of the two-prey-free periodic solutions and for the permanence of this system. We discuss the complex dynamical aspects of these systems via bifurcation diagrams.