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Abstract. In this paper, we consider a discrete predator-prey system with Watt-type

functional response and impulsive controls. First, we find sufficient conditions for stability

of a prey-free positive periodic solution of the system by using the Floquet theory and

then prove the boundedness of the system. In addition, a condition for the permanence of

the system is also obtained. Finally, we illustrate some numerical examples to substantiate

our theoretical results, and display bifurcation diagrams and trajectories of some solutions

of the system via numerical simulations, which show that impulsive controls can give rise

to various kinds of dynamic behaviors.

1. Introduction

Impulsive differential equations have been developed in modeling impulsive
problems in physics, population dynamics, biotechnology, pharmacokinetics, in-
dustrial robotics, and so forth. Recently, impulsive differential equations are sig-
nificantly used to study the mathematical properties of an impulsive predator-prey
system in population dynamics. Especially, controlling the population of insect
pest(prey) has become an increasingly complex issue([1, 2, 3, 13, 19, 26, 27, 38]).

There are many methods that can be used to help manage insect pests. One of
important methods for pest control is chemical control. Pesticides are useful because
they quickly kill a significant portion of a pest population. However, there are many
deleterious effects associated with the use of chemicals that need to be reduced or
eliminated. These include human illness associated with pesticide applications,
insect resistance to insecticides, contamination of soil and water, and diminution of
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biodiversity. As a result, it is required that we should combine pesticide efficacy
tests with other ways of control. For the reason, biological control is presented as one
of important alternatives. It is defined as the reduction in pest populations from the
actions of other living organisms, often called natural enemies or beneficial species.
Virtually all pests have some natural enemies, and the key to successful pest control
is to identify the pest and its natural enemies and releasing them at fixed times for
pest control. Spraying pesticide can affect natural enemies. But, in some cases,
pesticides can be successfully integrated into a biological control strategy with little
harming natural enemies([4, 6, 7, 8, 9, 23, 29, 30, 31, 32, 33, 35, 36, 37, 38]).

On the other hand, the relationship between pest and natural enemy can be ex-
pressed as a predator(natural enemy)-prey(pest) system mathematically as follows;

(1.1)


x′(t) = ax(t)(1− x(t)

K )− yP (x, y),
y′(t) = −dy(t) + eyP (x, y),

x(0) = x0, y(0) = y0,

where x(t), y(t) represent the population density of the prey and the predator at
time t, respectively. Usually, K is called the carrying capacity of the prey. The
constant a is called intrinsic growth rate of the prey. The constants e, d are the
conversion rate and the death rate of the predator, respectively. The function P is
the functional response of the predator which means prey eaten per predator per
unit of time.

Many scholars have studied such predator-prey systems with a functional re-
sponse, such as Holling-type [20, 21, 25], Monod-type [20, 21, 28] and Beddington-
type [15, 16, 18], etc. One of well-known function response is of Watt-type, proposed
by [34]. The predator-prey system with Watt-type is described as the following dif-
ferential equation:

(1.2)

{
x′(t) = ax(t)(1− x(t)

K )− b(1− exp(−cx(t)
y(t)γ ))y(t),

y′(t) = −dy(t) + e(1− exp(−cx(t)
y(t)γ ))y(t)),

where b is the maximum number of prey that can be eaten by a predator per unit
time. The constant c is the constant for the decrease in motivation to hunt and γ
is a nonnegative constant.

In order to accomplish the aims discussed above, we need to consider the fol-
lowing impulsive differential equation:

(1.3)



x′(t) = ax(t)(1− x(t)
K )− b(1− exp(−cx(t)

y(t)γ ))y(t), t ̸= nT,

y′(t) = −dy(t) + e(1− exp(−cx(t)
y(t)γ ))y(t), t ̸= nT,

x(t+) = (1− p)x(t), t = nT,

y(t+) = y(t) + q, t = nT,

(x(0+), y(0+)) = (x0, y0),
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where T is the period of the impulsive immigration or stock of the predator, 0 ≤
p < 1 presents the fraction of prey which die due to harvesting or pesticides etc and
q is the size of immigration or stock of the predator.

In fact, impulsive control methods can be found in almost every field of applied
sciences. Theoretical investigations and its application analysis can be found in
Bainov and Simeonov[10, 11, 12], Lakshmikantham et al.[22]. Moreover, impulsive
differential equations dealing with biological population dynamics are literate in
[14, 4, 5, 17, 23, 24, 31, 32, 37]. Especially, the authors in [32] have studiedWatt-type
predator-prey systems with impulsive perturbations, considering only the impulsive
control parameter q in system (1.3) with p = 0.

The main purpose of this paper is to investigate the dynamics of system (1.3).
In the next section, we introduce some notations which are used in this paper. We
study qualitative properties of system (1.3) in Section 3. In fact, we find conditions
for the stability of a prey-free periodic solution and for the permanence of system
(1.3) by using the Floquet theory. In Section 4, we numerically investigate the
effects of impulsive perturbations on inherent oscillation by illustrating bifurcation
diagrams and trajectories of solutions of the system.

2. Definitions and Basic Lemmas

In the section, we give some notations, definitions and Lemmas which will be
useful for our main results.

Let R+ = [0,∞) and R2
+ = {x = (x(t), y(t)) ∈ R2 : x(t), y(t) ≥ 0}. Denote N

the set of all of nonnegative integers and f = (f1, f2)
T the right hand side of system

(1.3).
Let V : R+ × R2

+ → R+, then V is said to be in a class V0 if

(1) V is continuous on (nT, (n+ 1)T ]× R2
+,

and lim
(t,y)→(nT,x)

t>nT

V (t,y) = V (nT+,x) exists.

(2) V is locally Lipschitzian in x.

Definition 2.1. Let V ∈ V0, (t,x) ∈ (nT, (n+ 1)T ]× R2
+. The upper right deriva-

tives of V (t,x) with respect to the impulsive differential system (1.3) is defined
as

D+V (t,x) = lim sup
h→0+

1

h
[V (t+ h,x+ hf(t,x))− V (t,x)].

Definition 2.2. System (1.3) is permanent if there exist M ≥ m > 0 such that,
for any solution (x(t), y(t)) of system (1.3) with x0 = (x0, y0) > 0,

m ≤ lim
t→∞

inf x(t) ≤ lim
t→∞

supx(t) ≤M and m ≤ lim
t→∞

inf y(t) ≤ lim
t→∞

sup y(t) ≤M.
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Remark (1) A solution of system (1.3) is a piecewise continuous function x : R+ →
R2

+, x(t) is continuous on (nT, (n+1)T ], n ∈ N and x(nT+) = limt→nT+ x(t) exists.
(2) The smoothness properties of f guarantees the global existence and uniqueness
of solution of system (1.3). (See [22] for the details).

The following lemma is obvious.

Lemma 2.3. Let x(t) = (x(t), y(t)) be a solution of system (1.3).
(1) If x(0+) ≥ 0 then x(t) ≥ 0 for all t ≥ 0.
(2) If x(0+) > 0 then x(t) > 0 for all t ≥ 0.

We will use the following important comparison theorem on impulsive differen-
tial equations [22].

Lemma 2.4.(Comparison theorem) Suppose V ∈ V0 and

(2.1)

{
D+V (t,x) ≤ g(t, V (t,x)), t ̸= nT,

V (t,x(t+)) ≤ ψn(V (t,x)), t = nT,

g : R+ × R+ → R is continuous on (nT, (n+ 1)T ]× R+ and for u(t) ∈ R+, n ∈ N,
lim(t,y)→(nT+,u) g(t, y) = g(nT+, u) exists, ψn : R+ → R+ is non-decreasing. Let
r(t) be the maximal solution of the scalar impulsive differential equation

(2.2)


u′(t) = g(t, u(t)), t ̸= nT,

u(t+) = ψn(u(t)), t = nT,

u(0+) = u0,

existing on [0,∞). Then V (0+,x0) ≤ u0 implies that V (t,x(t)) ≤ r(t), t ≥ 0, where
x(t) is any solution of equation (2.1).

Similar result can be obtained when all conditions of the inequalities in Lemma
2.4 are reversed. Note that if we have some smoothness conditions of g(t, u(t)) to
guarantee the existence and uniqueness of the solutions for equation (2.2), then r(t)
is exactly the unique solution of equation (2.2).

Now, we give the basic properties of the following impulsive differential equation.

(2.3)


y′(t) = −dy(t), t ̸= nT,

y(t+) = y(t) + q, t = nT,

y(0+) = y0.

Then we can easily obtain the following results.

Lemma 2.5. (1) y∗(t) =
q exp(−d(t− nT ))
1− exp(−dT )

, t ∈ (nT, (n + 1)T ], n ∈ N and

y∗(0+) =
q

1− exp(−dT )
is a positive periodic solution of system (2.3).
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(2) y(t) =

(
y(0+)− q

1− exp(−dT )

)
exp(−dt)+y∗(t) is the solution of system (2.3)

with y0 ≥ 0, t ∈ (nT, (n+ 1)T ] and n ∈ N.
(3) All solutions y(t) of system (1.3) with y0 ≥ 0 tend to y∗(t). i.e., |y(t)−y∗(t)| → 0
as t→∞.

It is from Lemma 2.4 that the general solution y(t) of equation (2.3) can be syn-
chronized with the positive periodic solution y∗(t) of equation (2.3) for sufficiently
large t and we can obtain the complete expression for the prey-free periodic solution
of system (1.3)

(0, y∗(t)) =

(
0,
q exp(−d(t− nT ))
1− exp(−dT )

)
for t ∈ (nT, (n+ 1)T ].

To study the stability of the prey-free periodic solution as a solution of system
(1.3) we present the Floquet theory for the linear T -periodic impulsive equation:

(2.4)

{
x′(t) = A(t)x(t), t ̸= τk, t ∈ R,
x(t+) = x(t) +Bkx(t), t = τk, k ∈ Z.

We introduce the following conditions:
(H1) A(·) ∈ PC(R, Cn×n) and A(t + T ) = A(t)(t ∈ R), where PC(R, Cn×n)

is the set of all piecewise continuous matrix functions which is left continuous at
t = τk, and C

n×n is the set of all n× n matrices.
(H2) Bk ∈ Cn×n, det(E +Bk) ̸= 0, τk < τk+1(k ∈ Z).
(H3) There exists a q ∈ N such that Bk+q = Bk, τk+q = τk + T (k ∈ Z).

Let Φ(t) be a fundamental matrix of equation (2.4), then there exists unique non-
singular matrix M ∈ Cn×n such that

(2.5) Φ(t+ T ) = Φ(t)M(t ∈ R).

By equality (2.5) there corresponds to the fundamental matrix Φ(t) and the constant
matrix M which we call the monodromy matrix of equation (2.4) (corresponding to
the fundamental matrix of Φ(t)).

All monodromy matrices of equation (2.4) are similar and have the same eigen-
values. The eigenvalues µ1, · · · , µn of the monodromy matrices are called the Flo-
quet multipliers of equation (2.4).

Lemma 2.6.([10])(Floquet theory) Let conditions (H1)−(H3) hold. Then the linear
T -periodic impulsive equation (2.4) is
(1) stale if and only if all multipliers µj(j = 1, · · · , n) of equation (2.4) satisfy the
inequality |µj | ≤ 1, and moreover, to those µj for which |µj | = 1, there correspond
simple elementary divisors;
(2) asymptotically stable if and only if all multipliers µj(j = 1, · · · , n) of equation
(2.4) satisfy the inequality |µj | < 1;
(3) unstable if |µj | > 1 for some j = 1, · · · , n.
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3. Main Results

Now, we present a condition which guarantees locally asymptotical stability of
the prey-free periodic solution (0, y∗(t)).

Theorem 3.1. If

aT − bc
(

q

1− exp(−dT )

)1−γ

(1− exp(−d(1− γ)T )) 1

d(1− γ)
< ln

1

1− p

then (0, y∗(t)) is locally asymptotically stable.

Proof. The local stability of the periodic solution (0, y∗(t)) of system (1.3) may
be determined by considering the behavior of small amplitude perturbations of the
solution. Let (x(t), y(t)) be any solution of system (1.3). Define x(t) = u(t), y(t) =
y∗(t) + v(t). Then they may be written as

(3.1)

(
u(t)
v(t)

)
= Φ(t)

(
u(0)
v(0)

)
, 0 ≤ t ≤ T,

where Φ(t) satisfies

(3.2)
dΦ

dt
=

(
a− bcy∗(t) 0
ecy∗(t) −d

)
Φ(t)

and Φ(0) = I, the identity matrix. The linearization of the third and fourth equation
of system (1.3) becomes

(3.3)

(
u(nT+)
v(nT+)

)
=

(
1− p 0
0 1

)(
u(nT )
v(nT )

)
.

Note that all eigenvalues of S =

(
1− p 0
0 1

)
Φ(T ) are µ1 = exp(−dT ) < 1 and

µ2 = (1− p) exp(
∫ T

0
a− bcy∗(t)1−γdt). Since∫ T

0

y∗(t)1−γdt =

(
q

1− exp(−dT )

)1−γ

(exp(d(1− γ)T )− 1)
1

d(1− γ)

we have

µ2 = (1− p) exp
(
aT − bc

(
q

1− exp(−dT )

)1−γ

(1− exp(−d(1− γ)T )) 1

d(1− γ)

)
The condition |µ2| < 1 is equivalent to the equation

aT − bc
(

q

1− exp(−dT )

)1−γ

(1− exp(−d(1− γ)T )) 1

d(1− γ)
< ln

1

1− p
.



An impulsively controlled Watt-type predator-prey system 837

According to Lemma , (0, y∗(t)) is locally asymptotically stable. 2

We show that all solutions of system (1.3) are uniformly ultimately bounded.

Proposition 3.2. There is an M > 0 such that x(t), y(t) ≤ M for all t large
enough, where (x(t), y(t)) is a solution of system (1.3).

Proof. Let x(t) = (x(t), y(t)) be a solution of system (1.3) and let V (t,x) =
ex(t) + by(t). Then V ∈ V0, if t ̸= nτ

(3.4) D+V + βV = −ea
K
x(t)2 + e(a+ β)x(t) + b(β − d)y(t),

and V (nτ+) = V (nτ) + q. Clearly, the right hand of (3.4), is bounded when
0 < β < d. Thus we can choose 0 < β0 < d and M0 > 0 such that

(3.5)

{
D+V ≤ −β0V +M0, t ̸= nτ,

V (nτ+) = V (nτ) + q.

From Lemma 2.4, we can obtain that

V (t) ≤ (V (0+) − M0

β0
) exp(−β0t) +

p(1− exp(−(n+ 1)β0τ))

1− exp(−β0τ)
exp(−β0(t −

nτ))+
M0

β0
for t ∈ (nτ, (n+ 1)τ ].

Therefore, V (t) is bounded by a constant for sufficiently large t. Hence there is
an M > 0 such that x(t) ≤ M,y(t) ≤ M for a solution (x(t), y(t)) with all t large
enough. 2

Theorem 3.3. System (1.3) is permanent if

aT − bc
(

q

1− exp(−dT )

)1−γ

(1− exp(−d(1− γ)T )) 1

d(1− γ)
> ln

1

1− p
.

Proof. Let (x(t), y(t)) be any solution of system (1.3) with (x0, y0) > 0. From

Proposition 3.2, we may assume that x(t) ≤M , y(t) ≤M , t ≥ 0 andM > (
a

bc
)

1
1−γ .

Let m2 =
p exp(−dT )

1− exp(−dT )
− ϵ2, ϵ2 > 0. From Lemma 2.4, clearly we have y(t) ≥ m2

for all t large enough. Now we shall find an m1 > 0 such that x(t) ≥ m1 for all t
large enough. We will do this in the following two steps.

(Step 1) Since

aT − bc
(

q

1− exp(−dT )

)1−γ

(1− exp(−d(1− γ)T )) 1

d(1− γ)
> ln

1

1− p
,

we can choose m3 > 0, ϵ1 > 0 small enough such that δ ≡ qm3

m3 + bmγ
2

< d

and R = (1 − p) exp

(∫ T

0
a − a

K
m3 − bc(u∗(t) + ϵ1)

1−γdt

)
> 1, where u∗(t) =
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q exp((−d+ δ)(t− nT ))
1− exp((−d+ δ)T )

, t ∈ (nT, (n + 1)T ] and n ∈ N. Now we can prove that

x(t) < m3 cannot hold for all t. Otherwise, we can get y′(t) ≤ y(t)(−d + δ). By
Lemma 2.4, we have y(t) ≤ u(t) and u(t)→ u∗(t), t→∞, where u(t) is the solution
of

(3.6)


u′(t) = (−d+ δ)u(t), t ̸= nT,

u(t+) = u(t) + q, t = nT

u(0+) = y0.

Then there exists T1 > 0 such that y(t) ≤ u(t) ≤ u∗(t)+ ϵ1. Since 1−exp(−cx(t)
y(t)γ ) ≤

cx(t)
y(t)γ we obtain that

x′(t) = x(t)(a− a

K
x(t))− b

(
1− exp(

−cx(t)
y(t)γ

)
)
y(t)

≥ x(t)
(
a− a

K
m3 − bcy(t)1−γ

)
≥ x(t)

(
a− a

K
m3 − bc(u∗(t) + ϵ1)

1−γ
)
for t ≥ T1 and t ̸= nT.

Let N1 ∈ N and N1T ≥ T1. We have, for n ≥ N1

(3.7)

{
x′(t) ≥ x(t)

(
a− a

K
m3 − bc(u∗(t) + ϵ1)

1−γ
)
, t ̸= nT,

x(t+) = (1− p)x(t), t = nT.

Integrating (3.7) on (nT, (n+ 1)T ](n ≥ N1), we obtain

x((n+ 1)T ) ≥ x(nT+) exp

(∫ (n+1)T

nT

a− a

K
m3 − bc(u∗(t) + ϵ1)

1−γdt

)
= x(nT )R.

Then x((N1 + k)T ) ≥ x(N1T )R
k → ∞ as k → ∞ which is a contradiction. Hence

there exists a t1 > 0 such that x(t1) ≥ m3.
(Step 2) If x(t) ≥ m3 for all t ≥ t1, then we are done. If not, we may let

t∗ = inft>t1{x(t) < m3}. Then x(t) ≥ m3 for t ∈ [t1, t
∗]. If t∗ ̸= nT for all

n ∈ N and x(t) is continuous then x(t∗) = m3. If t∗ = n0T for some n0 ∈ N,
let t∗∗ = t∗ − ϵ0, where ϵ0 is small enough, then x(t∗∗) ≥ m3. Without loss
of generality, we may assume that t∗ ̸= nT for all n ∈ N. Suppose that t∗ ∈

[n1T, (n1 + 1)T ) for some n1 ∈ N. Select n2, n3 ∈ N such that n2T >
log( ϵ1

M+p )

−d+ δ

and (1− p)n2+1 exp((n2 + 1)σT )Rn3 > 1, where σ = a− a

K
m3 − bcM1−γ < 0. Let

T ′ = n2T + n3T . There are two possible cases for t ∈ (t∗, (n1 + 1)T ′].
Case 1) x(t) < m3 for all t ∈ (t∗, (n1 + 1)T ].
In this case we will show that there exists t2 ∈ [(n1+1)T, (n1+1)T+T ′] such that

x2(t2) ≥ m3. Suppose not. i.e., x(t) < m3, for all t ∈ [(n1+1)T, (n1+1+n2+n3)T ].
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Then x(t) < m3 for all t ∈ (t∗, (n1+1+n2+n3)T ]. By (3.6) with u((n1+1)T+) =
y((n1 + 1)T+), we have

u(t) =

(
u((n1 + 1)T+)− q

1− exp(−d+ δ)

)
exp((−d+ δ)(t− (n1 + 1)T )) + u∗(t)

for t ∈ (nT, (n+ 1)T ], n1 + 1 ≤ n ≤ n1 + n2 + n3. So we get |u(t)− u∗(t)| ≤ (M +
q) exp((−d+ δ)n2T ) < ϵ1 and y(t) ≤ u(t) ≤ u∗(t)+ ϵ1 for t ∈ [(n1 +1+n2)T, (n1 +
1 + n2 + n3)T ], which implies (3.7) holds on [(n1 + 1 + n2)T, (n1 + 1 + n2 + n3)T ].
As in step 1, we have

x((n1 + 1 + n2 + n3)T ) ≥ x2((n1 + 1 + n2)T )R
n3 .

Since y(t) ≤M , for t ∈ (t∗, (n1 + 1 + n2)T ], we obtain

(3.8)

{
x′(t) ≥ x(t)

(
a− a

K
m3 − bcM1−γ

)
, t ̸= nT,

x(t+) = (1− p)x(t), t = nT.

Integrating it on [t∗, (n1 + 1 + n2)T ] we get

x((n1 + 1 + n2)T ) ≥ m3(1− p)n2+1 exp(σ(n2 + 1)T ).

Thus x((n1 +1+n2 +n3)T ) ≥ m3(1− p)n2+1 exp(σ(n2 +1)T )Rn3 > m3 which is a
contradiction. Now, let t̄ = inft>t∗{x(t) ≥ m3}. Then x(t) ≤ m3 for t∗ ≤ t < t̄ and
x(t̄) = m3. Thus (3.8) holds for t ∈ [t∗, t̄). By the integration of it on [t∗, t)(t∗ ≤
t ≤ t̄), we can get that x(t) ≥ x(t∗) exp(σ(t − t∗)) ≥ m3(1 − p)1+n2+n3 exp(σ(1 +
n2 + n3)T ) ≡ m1.

Case 2) There is a t′ ∈ (t∗, (n1 + 1)T ] such that x2(t
′) ≥ m3.

Let t̂ = inft>t∗{x(t) ≥ m3}. Then x(t) ≤ m3 for t ∈ [t∗, t̂) and x(t̂) = m3. Also,
(3.8) holds for t ∈ [t∗, t̂). Integrating the equation on [t∗, t)(t∗ ≤ t ≤ t̂), we can get
that x(t) ≥ x(t∗) exp(σ(t− t∗)) ≥ m3 exp(σT ) ≥ m1.

Thus in both case the similar argument can be continued since x(t) ≥ m3 for
some t > t1. This completes the proof. 2

Remark Let qmax = (1 − exp(−dT ))
( d(1−γ)(aT+ln(1−p))
bc(1−exp(−d(1−γ)T ))

) 1
1−γ . From Theorem 3.1

and Theorem 3.3, we know that the prey-free periodic solution is locally asymptoti-
cally stable if q > qmax and otherwise, the prey and predator can coexist. Thus qmax

plays a role of a critical value that discriminates between stability and permanence.

4. Numerical Simulation

In this section, we will study dynamic behaviors of system (1.3) by means of
numerical simulation because the continuous system (1.3) cannot be solved explic-
itly. Especially, we investigate the influence of impulsive perturbations numerically.
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For this, we fix the parameters as follows:

(4.1) a = 4.0,K = 2.0, b = 1.0, c = 5.5, d = 0.2, e = 9.0, γ = 0.4, p = 0.2.
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Figure 1: Dynamical behavior of system (1.3). (a) Phase portrait of a T -
period solution for q = 0. (b) Phase portrait of a T -period solution for
q = 0.2.
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Figure 2: Dynamical behavior of system (1.3) with q = 1.0. (a) The trajec-
tory of x is plotted. (b) The trajectory of y is plotted.

From Figure 1(a), we can figure out that there exists a limit cycle of system
(1.3) when q = 0. It follows from Theorem 3.1 that the prey-free periodic solution
(0, y∗(t)) is locally asymptotically stable provided that q > qmax = 0.8517. A typical
prey-free periodic solution of system (1.3) is exhibited in the Figure 2(a) and (b),
where we observe how the variable y(t) oscillates in a stable cycle. In contrast, the
prey x(t) rapidly decreases to zero. On the other hand, if the amount q of releasing
species is smaller than qmax, then prey and predator can coexist on a stable positive
periodic solution (Figure 1(b)) and system (1.3) can be permanent which follows
from Theorem 3.1. In Figure 3, we display a bifurcation diagram for prey and
predator populations as q increasing from 0 to 1 with initial value x0 = (1.0, 1.0).
The resulting bifurcation diagram clearly shows that system (1.3) has rich dynamics
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Figure 3: Bifurcation diagrams of system (1.3) for q when 0 < q < 1.0. (a)
x is plotted. (b) y is plotted.
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Figure 4: Coexistence of prey and predator when q = 0.58. (a) A solution
with initial value (1, 1). (b) A solution with initial value (0.04, 0.6).

including cycles, periodic doubling bifurcation, chaotic bands, periodic window,
period-halving bifurcation, etc. In Figure 3, solutions with period T are still stable
for q < 0.3885. When q > 0.3885, they become unstable and solutions with period
3 begin to appear. Figure 3 illustrates an evidence for cascade of period doubling
bifurcations leading to chaos when 0.4915 < q < 0.53. We can capture a typical
chaotic attractor when q = 0.7. (Figure 5(a)). We can also find that there exist
sudden changes in Figure 3 when q ≈ 0.407, 0.4529, 0.58 and 0.6071. Furthermore,
they can lead to non-unique attractors. Specially, there exist two attractors when
q = 0.58, shown in Figure 4. These results show that just one parameter can give
rise to multiple attractors. Narrow periodic windows and wide periodic windows
are intermittently scattered. At the end of the chaotic region, there is a cascade of
period-halving bifurcation from chaos to one cycle. (see Figure 5). Periodic halving
is the flip bifurcation in the opposite direction.

The results we obtain in this paper show that the impulsive perturbations have
significant effects on the stable limit cycle of system (1.2) and make the dynamics
of system (1.3) more complicated.
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Figure 5: Period-halving bifurcation from chaos to cycle. (a) Chaotic at-
tractor for q = 0.7. (b) Phase portrait of a 4T -period solution for q = 0.74.
(c) Phase portrait of a 2T -period solution for q = 0.78. (d) Phase portrait
of a T -period solution for q = 0.84.
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