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ASYMPTOTICAL BEHAVIORS OF A DIFFUSIVE

PREDATOR-PREY SYSTEM WITH

RATIO-DEPENDENT FUNCTIONAL RESPONSE AND

MATURATION DELAY

Wonlyul Ko

Abstract. In this paper, we consider a delayed ratio-dependent
predator-prey reaction-diffusion system with homogenous Neumann
boundary conditions. We study the existence of nonnegative solu-
tions and the stability of the nonnegative equilibria to the system.
In particular, we provide a sufficient condition for the positive equi-
librium to be globally asymptotically stable.

1. Introduction

In this paper, we deal with the following predator-prey reaction-
diffusion system with a ratio-dependent functional response and time
delay effect:

(1.1)



∂u(x, t)

∂t
= ∆u(x, t) + u(x, t)(1− u(x, t))

− αu(x, t)v(x, t)

u(x, t) + v(x, t)
in Ω× (0,∞),

∂v(x, t)

∂t
= ρ∆v(x, t) +

βu(x, t− τ)v(x, t− τ)

u(x, t− τ) + v(x, t− τ)

−dv(x, t) in Ω× (0,∞),
∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω× (0,∞),

u(x, θ) = u0(x) ≥ 0, v(x, θ) = v0(x) ≥ 0 in Ω× [−τ, 0],
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where Ω ⊆ RN is a bounded domain with a smooth boundary ∂Ω, the
given coefficients α, β, ρ and d are positive constants, τ is a nonnegative
constant, ν is the outward directional derivative normal to ∂Ω, and the
initial data u0, v0 are continuous functions that are not identically zero.
Moreover, u(x, t) and v(x, t) are the population densities of the prey
and predators in spatial location x and at time t, respectively, and ρ
denotes the diffusion rate of the predator species. In addition, α is
the consumption (or predation) rate of the prey by the predators, β
represents the conversion rate of the prey into a predator, d denotes
the predator’s death rate, and τ represents the time-delay effect for
predators.

Based on the biological background given in [2, 4, 5, 6], we are able
to propose the following diffusive stage-structured predator-prey model
with a ratio-dependent function response (e.g., see [6]):
(1.2)

∂u(x, t)

∂t
= d1∆u(x, t) + ru(x, t)

(
1− u(x, t)

K

)
− αu(x, t)v(x, t)

u(x, t) +mv(x, t)
in Ω× (0,∞),

∂v(x, t)

∂t
= d2∆v(x, t) + βe−γτ αu(x, t− τ)v(x, t− τ)

u(x, t− τ) +mv(x, t− τ)

−dv(x, t) in Ω× (0,∞),

∂w(x, t)

∂t
= β

αu(x, t)v(x, t)

u(x, t) +mv(x, t)
− βe−γτ αu(x, t− τ)v(x, t− τ)

u(x, t− τ) +mv(x, t− τ)

−γw(x, t) in Ω× (0,∞),

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, on ∂Ω× (0,∞),

u(x, θ) = u0(x) ≥ 0, v(x, θ) = v0(x) ≥ 0 in Ω× [−τ, 0],

w(x, 0) =

∫ 0

−τ
βeγs

αu(x, s)v(x, s)

u(x, s) +mv(x, s)
ds in Ω,

where u(x, t), v(x, t) and w(x, t) represent the density of the prey, ma-
ture predators and immature predators, respectively. The given coeffi-
cients d1, d2, r, K, α, β, m, d, γ are positive constants and τ is the
nonnegative constant. These coefficients given in (1.2) have appropriate
biological meanings as in [2, 4, 5, 6] since (1.2) is designed to account
for a robust predator-prey interaction system with stage structure with
constant maturation time delay (through-stage time delay). One impor-
tant feature of this model is that immature (juvenile) predators suffer a
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mortality rate of γ and take a constant τ time to mature, and another is
that the per capita predator growth rate depends on the ratio of prey to
predator abundance (so-called the ratio-dependent functional response
[1, 4]).

For convenience, when studying the above system, after introducing
a new typical length scale and the following dimensionless quantities and
then dropping the upper bars:

t̄ = rt, x̄ =

√
d1
r
x, ū =

u

K
, v̄ =

m

K
v, w̄ =

m

K
w, ᾱ =

α

rm
,

β̄ =
α

r
e−γτβ, γ̄ =

γ

r
, τ̄ = rτ, s̄ = rs, d̄ =

d

r
, ρ =

d2
d1
,

then we can eventually obtain the dimensionless form:
(1.3)

∂u(x, t)

∂t
= ∆u(x, t) + u(x, t) (1− u(x, t))

− αu(x, t)v(x, t)

u(x, t) + v(x, t)
in Ω× (0,∞),

∂v(x, t)

∂t
= ρ∆v(x, t) +

βu(x, t− τ)v(x, t− τ)

u(x, t− τ) + v(x, t− τ)

−dv(x, t) in Ω× (0,∞),

∂w(x, t)

∂t
= eγτ

βu(x, t)v(x, t)

u(x, t) + v(x, t)
− βu(x, t− τ)v(x, t− τ)

u(x, t− τ) +mv(x, t− τ)

−γw(x, t) in Ω× (0,∞),

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, on ∂Ω× (0,∞),

u(x, θ) = u0(x) ≥ 0, v(x, θ) = v0(x) ≥ 0 in Ω× [−τ, 0],

w(x, 0) =

∫ 0

−τ
eγ(s+τ) βu(x, s)v(x, s)

u(x, s) + v(x, s)
ds in Ω.

We see that the first two differential equations in system (1.3) are decou-
pled from the immature predators. Moreover, from the third differential
equation in system (1.3), we have

w(x, t) =

∫ t

t−τ
eγτe−γ(t−s) βu(x, s)v(x, s)

u(x, s) + v(x, s)
ds

=

∫ τ

0
eγ(τ−s) βu(x, t− s)v(x, t− s)

u(x, t− s) + v(x, t− s)
ds in Ω.
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Thus, the dynamics of system (1.3) is entirely determined by its first
two equations. Therefore, we study system (1.1) which is a subsystem
of (1.3).

In this present paper, we study the global existence of nonnegative
solutions to system (1.1) using the upper-lower solution method [7]. We
also investigate whether the nonnegative solutions of the system satisfy
the uniform boundedness and persistence properties. We finally provide
sufficient conditions for local and global stability of the semitrivial and
positive equilibria to the system. To the end, we analyze the charac-
teristic equations, and we use the comparison argument and monotone
iteration scheme.

The remainder of this paper is organized as follows. In Section 2, we
summarize the main results on the existence of nonnegative solutions to
system (1.1), the uniform boundedness and persistence of the solutions,
and the local/global stability of nonnegative equilibria of the system. In
Section 3, we provide proofs for these results.

2. Main theorems

In this section, without giving proofs, we just state our main results:
the existence of nonnegative solutions to system (1.1), and the stability
of the prey-only and coexistence equilibria of (1.1).

Theorem 2.1. System (1.1) has a unique global nonnegative solution
(u(x, t), v(x, t)) in [C(Ω× [0,∞))]2.

We study the boundedness and persistence of the solution to (1.1).

Theorem 2.2. Let (u(x, t), v(x, t)) be the nonnegative solution to
(1.1). Then

(i)

lim sup
t→∞

u(x, t) ≤ 1 and lim sup
t→∞

v(x, t) ≤ β

d
on Ω.

(ii) If α < 1,

lim inf
t→∞

u(x, t) ≥ 1− α and lim inf
t→∞

v(x, t) ≥ β

d
(1− α) on Ω.

The following is a simple result of the global stability at (1, 0).

Theorem 2.3. Let (u(x, t), v(x, t)) be the nonnegative solution to
(1.1). If α < 1 and β ≤ d,

lim
t→∞

(u(x, t), v(x, t)) = (1, 0) on Ω.
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In the following, we study the ranges of α in which system (1.1) has
a unique positive equilibrium which is globally asymptotically stable.

Theorem 2.4. If β > d and α < β
β−d , then (1.1) has a unique positive

constant solution

(u∗, v∗) =

(
1− α

β − d

β
,
β − d

d
u∗

)
.

In addition, if α < β2

β2+d(β−d)
, then (u∗, v∗) is globally asymptotically

stable.

Finally, we study the local stability at (1, 0) and (u∗, v∗).

Theorem 2.5. (i) If β < d, then (1, 0) is locally asymptotically stable.

(ii) If β > d and α ≤ β(β+d)
(β−d)(β+3d) , then (u∗, v∗) is locally asymptoti-

cally stable.

3. Proofs of main theorems

In this section, we prove the main results given in the previous section.

Proof of Theorem 2.1. The right-hand sides of the differential equa-
tions in (1.1) satisfy the mixed quasi-monotone property and Lipschitz
condition (see [7]) in (R+)2 = [0,∞)2. Let

(u, v) = (0, 0) and

(u, v) =

(
max{||u0||∞, 1},max

{
β

d
u, ||v0||∞

})
.

Then we see that (u, v) and (u, v) are the lower and upper solution (see
[7]) to (1.1), respectively. Thus from the upper-lower solution method
[7, Chap. 8] (see also [8, Theorem 2.1]), (1.1) has a unique globally
defined solution (u, v) in [C(Ω× [0,∞))]2.

Proof of Theorem 2.2 (i). From the first equation in (1.1), we know
that

∂u(x, t)

∂t
≤ ∆u(x, t) + u(x, t)(1− u(x, t)) in Ω× (0,∞).

Thus, from the standard comparison argument, we obtain the bounded-
ness of u.

According to the first result, there exists T > 0 such that

u(x, t) ≤ 1 + ϵ in Ω× [T,∞),
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where ϵ > 0 is an arbitrary constant. Using it in the second equation of
(1.1), we can derive that

∂v(x, t)

∂t
≤ ρ∆v(x, t) + β(1 + ϵ)− dv(x, t) in Ω× [T + τ,∞).

Hence, the comparison argument and arbitrariness of ϵ give the second
result.

We now introduce the following result from [6, Lemma 4.3], which
plays an important role in studying the stability of the constant steady-
states to (1.1).

Lemma 3.1. Let v(x, t) be the nonnegative solution to the delayed
differential equation
(3.1)

∂v(x, t)

∂t
= ρ∆v(x, t) +

βMv(x, t− τ)

M + v(x, t− τ)
− dv(x, t) in Ω× (0,∞),

∂v

∂ν
= 0 on ∂Ω× (0,∞),

v(x, θ) = ϕ(x, θ) in Ω× [−τ, 0],

where M is a positive constant and ϕ ≥ 0(̸≡ 0) is a continuous function
in Ω× [−τ, 0].

(i) If β > d,

lim
t→∞

v(x, t) =

(
β

d
− 1

)
M on Ω.

(ii) If β ≤ d, then

lim
t→∞

v(x, t) = 0 on Ω.

Proof of Theorem 2.2 (ii). From the first equation in (1.1), we can
derive that

∂u(x, t)

∂t
≥ ∆u(x, t) + u(x, t)(1− α− u(x, t)) in Ω× (0,∞).

Thus, from the standard comparison argument, we obtain the desired
first result.

Using the result obtained above in the second equation of (1.1), we
see that there exists T > 0 such that

∂v(x, t)

∂t
≥ ρ∆v(x, t) +

β(1− α− ϵ)v(x, t− τ)

1− α− ϵ+ v(x, t− τ)
− dv(x, t)
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in Ω× (T + τ,∞), where ϵ is an arbitrary positive constant. Thus, from
the standard comparison argument,

(3.2) v(x, t) ≥ v̂(x, t) in Ω× (T + τ,∞),

where v̂(x, t) is the nonnegative solution to problem (3.1) with M =
1− α − ϵ and ϕ(x, θ) = v(x, θ) in Ω× [T, T + τ ]. Moreover, by Lemma
3.1,

lim
t→∞

v̂(x, t) =

(
β

d
− 1

)
(1− α− ϵ) on Ω.

Hence, this and the arbitrariness of ϵ, together with (3.2), implies the
second desired result.

Proof of Theorem 2.3. Let ϵ be an arbitrary positive constant. Ac-
cording to the first result in Theorem 2.2(i), there exists T1 > 0 such
that u(x, t) ≤ 1 + ϵ in Ω× (T1,∞). Thus, using it, we derive that

∂v(x, t)

∂t
≤ ρ∆v(x, t) +

β(1 + ϵ)v(x, t− τ)

1 + ϵ+ v(x, t− τ)
− dv(x, t)

in Ω× (T1 + τ,∞). Thus, from the standard comparison argument,

v(x, t) ≤ ṽ(x, t) in Ω× (T1 + τ,∞),

where ṽ(x, t) is the nonnegative solution to problem (3.1) withM = 1+ϵ
and ϕ(x, θ) = v(x, θ) in Ω× [T1, T1+ τ ], and furthermore it follows from
Lemma 3.1 that limt→∞ v̂(x, t) = 0 holds on Ω. Hence, similar to the
proof of the previous theorem, we can obtain that limt→∞ v(x, t) = 0 on
Ω.

From the result obtained above and Theorem 2.2(ii), we see that
exists T2 ≥ T1 + τ such that v(x, t) ≤ ϵ and u(x, t) ≥ 1 − α − ϵ in
Ω× (T2,∞). Using it in the first equation in (1.1), we can have

∂u(x, t)

∂t
≥ ∆u(x, t)+u(x, t)

(
1− ϵ

1− α− ϵ
− u(x, t)

)
in Ω× (T2,∞).

Hence, by the comparison argument and arbitrariness of ϵ, we have
lim inft→∞ u(x, t) ≥ 1 on Ω, which, together with the first result in
Theorem 2.2(i), imply limt→∞ u(x, t) = 1 on Ω.

Proof of Theorem 2.4. When the given assumptions hold ture, we can
easily see that (1.1) has the positive equilibrium (u∗, v∗).

Let ϵ > 0 be a sufficiently small constant. First, since α < 1 and
β > d, as in the proofs of the previous theorems, we can have from the
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comparison argument and Lemma 3.1 that there exists T1 > 0 such that

1− α− ϵ := u1 ≤u(x, t) ≤ u1 := 1 + ϵ,(
β

d
− 1

)
u1 − ϵ := v1 ≤v(x, t) ≤ v1 :=

(
β

d
− 1

)
u1 + ϵ

in Ω× (T1 + τ,∞). Using these results in the first equation of (1.1),

∂u(x, t)

∂t
≤ ∆u(x, t) + u(x, t)

(
1− αv1

u1 + v1
− u(x, t)

)
,

∂u(x, t)

∂t
≥ ∆u(x, t) + u(x, t)

(
1− αv1

u1 + v1
− u(x, t)

)
in Ω × (T1 + τ,∞). Thus, from the comparison argument and Lemma
3.1, we see that there exists T2 ≥ T1 + τ such that

1− αv1
u1 + v1

− ϵ := u2 ≤u(x, t) ≤ u2 := 1− αv1
u1 + v1

+ ϵ

in Ω× (T2,∞). Using this derived result in the second equation of (1.1),
we sequentially obtain that

∂v(x, t)

∂t
≤ ρ∆v(x, t) +

βu2v(x, t− τ)

u2 + v(x, t− τ)
− dv(x, t),

∂v(x, t)

∂t
≥ ρ∆v(x, t) +

βu2v(x, t− τ)

u2 + v(x, t− τ)
− dv(x, t),

in Ω × (T2,∞). Thus, using the comparison argument and Lemma 3.1
again, we can derive that there exists T3 ≥ T2 such that(

β

d
− 1

)
u2 − ϵ := v2 ≤v(x, t) ≤ v2 :=

(
β

d
− 1

)
u2 + ϵ

in Ω× (T2,∞). Furthermore, it is obvious from the definitions of u∗, v∗,
ui, vi, ui and vi (i = 1, 2) that

u1 ≤ u2 ≤ u∗ ≤ u2 ≤ u1, v1 ≤ v2 ≤ v∗ ≤ v2 ≤ v1.

Now, repeating the above arguments with u2 ≤ u(x, t) ≤ u2 and
v2 ≤ v(x, t) ≤ v2 in Ω× (T2,∞), we can eventually obtain that

(3.3)
u1 ≤ u2 ≤ · · · ≤ un ≤ · · · ≤ u∗ ≤ · · · ≤ un ≤ · · · ≤ u2 ≤ u1,

v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ v∗ ≤ · · · ≤ vn ≤ · · · ≤ v2 ≤ v1,

where

un = 1− αvn−1

un−1 + vn−1
− ϵ, un = 1−

αvn−1

un−1 + vn−1

+ ϵ,
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vn =

(
β

d
− 1

)
un + ϵ, vn =

(
β

d
− 1

)
un − ϵ.

Since the constant sequences {un}, {vn}, {un} and {vn} satisfy (3.3),
the limits of these sequences exist. Denote

lim
n→∞

un = u, lim
n→∞

un = u, lim
n→∞

vn = v, lim
n→∞

vn = v.

To complete the proof, we are going to prove that u = u and v = v.
Suppose for a contradiction that u > u. By using the definitions of un,
un, vn and vn, and by letting n→ ∞, we can see that

u = 1− αv

u+ v
− ϵ, u = 1− αv

u+ v
+ ϵ,

v =

(
β

d
− 1

)
u+ ϵ, v =

(
β

d
− 1

)
u− ϵ,(3.4)

which lead to

(1− u)(u+ (
β

d
− 1)u)− α(

β

d
− 1)u = ϵ(α− 1 + 2u+ (

β

d
− 1)u+ ϵ),

(3.5)

(1− u)(u+ (
β

d
− 1)u)− α(

β

d
− 1)u = ϵ(−α+ 1− 2u− (

β

d
− 1)u+ ϵ).

(3.6)

By subtracting (3.6) from (3.5), we have

(3.7)

(u− u)

(
−1 + (1− α)(

β

d
− 1) + u+ u

)
= ϵ

(
−2(1− α) + (

β

d
+ 1)(u+ u)

)
.

It is obvious that

(3.8) −2(1− α) + (
β

d
+ 1)(u+ u) ≥ −2(1− α) + 4(1− α− ϵ) > 0

for a sufficiently small ϵ > 0, since u, u ≥ 1−α−ϵ, and β > d. Moreover,
using the given assumption and the fact that u ≥ u∗ and u ≥ 1− α− ϵ,
we know that

(3.9)

−1 + (1− α)(
β

d
− 1) + u+ u

≥ −1 + (1− α)(
β

d
− 1) + u∗ + 1− α− ϵ

=
β2 + d(β − d)

βd

(
β2

β2 + d(β − d)
− α

)
− ϵ > 0
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holds for a sufficiently small ϵ > 0. Using (3.8) and (3.9) in (3.7), and
noting that ϵ > 0 can be arbitrarily small, we have u = u. Sequentially,
v = v follows from (3.4). The proof is completed.

We now prove the local stability of the constant equilibria (1, 0) and
(u∗, v∗) (if it exists).

We let

0 = µ0 < µ1 ≤ µ2 ≤ · · · ≤ µk ≤ µk+1 · · ·
be the eigenvalues of −∆ in Ω under the homogeneous Neumann bound-
ary condition on ∂Ω.

When u0 = (u0, v0) is a nonnegative constant solution of (1.1), the
linearization of (1.1) at u0 can be written as follows:

(3.10)

∂ϕ(t)

∂t
∂ψ(t)

∂t

 = D
(
ϕ(t)
ψ(t)

)
+ L1

(
ϕ(t)
ψ(t)

)
+ L2

(
ϕ(t− τ)
ψ(t− τ)

)

for (ϕ, ψ) ∈ [C([−τ, 0], L2(Ω))]2, where

D =

(
∆ 0

0 ρ∆

)
: Dom(D) → [L2(Ω)]2,

Dom(D) =

{
(u, v)T : u, v ∈W 2,2(Ω),

∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω

}
,

L1 =

−u0 +
αu0v0

(u0 + v0)2
− αu20
(u0 + v0)2

0 −d

,
L2 =

 0 0

βv20
(u0 + v0)2

βu20
(u0 + v0)2

.
Then the characteristic equation for the linear system (3.10) at u0 takes
the form

λφ−D(φ)− L1(φ)− L2(e
λφ) = 0, φ ∈ Dom(D), φ ̸= 0.

Using the eigenfunction expansions of φ in the characteristic equation,
we see that the eigenvalue λ satisfies

det

λ+ µk + u0 −
αu0v0

(u0 + v0)2
αu20

(u0 + v0)2

− βv20
(u0 + v0)2

e−λτ λ+ ρµk + d− βu20
(u0 + v0)2

e−λτ

 = 0
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for k = 0, 1, 2, · · · . Thus according to [3, Chap. 5], if all roots of

Dk(λ, τ) =λ
2 + λ

(
(1 + ρ)µk + d+ u0 −

αu0v0
(u0 + v0)2

)
+

(
µk + u0 −

αu0v0
(u0 + v0)2

)
(ρµk + d)(3.11)

− βu20
(u0 + v0)2

e−λτ

(
λ+ µk + u0 −

αu0v0
(u0 + v0)2

− αv20
(u0 + v0)2

)
=0

have negative real parts, then u0 is locally asymptotically stable, whereas
if at least one eigenvalue has a positive real part, it is unstable.

Proof of Theorem 2.5. (i) When u0 = (1, 0) in (3.11),

Dk(λ, τ) = (λ+ µk + 1)
(
λ+ ρµk + d− βe−λτ

)
.

It is obvious that λ = −(µk +1) < 0 is a root of Dk(λ, τ) = 0, so that it
suffices to show that the roots of

(3.12) λ+ ρµk + d− βe−λτ = 0

have negative real parts. Assume that λ = A + iB with A ≥ 0. Then
(3.12) can be rewritten as

(A+ ρµk + d) + iB = βe−Aτ (cos τB − i sin τB), k ≥ 0.

Furthermore, using it, we can derive that

A+ ρµk + d ≤ |(A+ ρµk + d) +Bi| ≤ β,

which is a contradiction to β < d. The proof is complete.
(ii) Using the definitions of u∗ and v∗, when u0 = (u∗, v∗) in (3.11),

Dk(λ, τ) = (λ+Ak) (λ+ Pk)−
d2

β
e−λτ (λ+Qk) ,

where

Ak = ρµk + d, Pk = µk + 1− α(1− d2

β2
), Qk = µk + 1− 2α(1− d

β
).

If λ = 0, then

Dk(0, τ) = AkPk −
d2

β
Qk

= ρµ2k +

(
ρP0 + d− d2

β

)
µk + d

(
P0 −

d

β
Q0

)
.
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Since β > d and α < β
β−d ,

P0 −
d

β
Q0 =

(
1− d

β

)(
1− α(1− d

β
)

)
> 0

holds. Moreover, when β > d,

ρP0 + d− d2

β
= ρ+ d(1− d

β
)− ρα(1− d2

β2
)

≥ 0 iff α ≤ ρβ2 + βd(β − d)

ρ(β2 − d2)
.

Thus Dk(0, τ) > 0 for all k ≥ 0 if

either β > d, ρ > β − d and α ≤ ρβ2 + βd(β − d)

ρ(β2 − d2)
,

or β > d, ρ ≤ β − d and α <
β

β − d
.

To consider the case that ρP0 + d − d2

β < 0, find the discriminant of

Dk(0, τ) in µk,

H(α) :=

(
ρP0 + d− d2

β

)2

− 4ρd

(
P0 −

d

β
Q0

)
.

The equation H(α) = 0 has two positive roots, say α1 and α2 with
α1 < α2, if ρ > β − d. Moreover, through straightforward calculations,
we can see that if β > d and ρ > β − d, then

H

(
β

β − d

)
=

(
ρ
d

β
− d(1− d

β
)

)2

≥ 0,

H

(
ρ+ d(1− d

β )

ρ(1− d2

β2 )

)
= −4d

(
ρ
d

β
− d(1− d

β
)

)
β − d

β + d
< 0.

Thus if

β > d, ρ > β − d and
ρβ2 + βd(β − d)

ρ(β2 − d2)
< α < α2,

then H(α) < 0 holds, and so Dk(0, τ) > 0 for all k ≥ 0. Hence, λ = 0
can not be a root of Dk(λ, τ) = 0 for all k ≥ 0 if

(3.13)

either β > d, ρ > β − d and α < α2,

or β > d, ρ ≤ β − d and α <
β

β − d
.
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We now investigate whether Re(λ) < 0 holds, when τ = 0. Note that

Dk(λ, 0) = λ2 +

(
Ak + Pk −

d2

β

)
λ+AkPk −

d2

β
Qk,

and if (3.13) and

(3.14) α <
β2 + βd(β − d)

β2 − d2

hold, then

AkPk −
d2

β
Qk = Dk(0, τ) > 0

Ak + Pk −
d2

β
= (ρ+ 1)µk + 1 + d(1− d

β
)− α(1− d2

β2
) > 0

for all k ≥ 0, and thus Re(λ) < 0. Hence if (3.13) and (3.14) are given,
all the roots of Dk(λ, 0) = 0 have negative real parts, so that (u∗, v∗) is
locally asymptotically stable when τ = 0.

We finally investigate whether stability switches occurs for increasing
τ ≥ 0. We know that stability switches may occur only when a root of
(3.11) crosses the imaginary axis, that is, (3.11) has a pair of roots
λ = ±iσ(τ) with σ(τ) > 0. We now assume that λ = ±iσ(τ) (σ(τ) > 0)
in (3.11). Then from

Dk(iσ, τ) =− σ2 +AkPk −
d2

β
Qk cos τσ − d2

β
σ sin τσ

+ i

(
σ(Ak + Pk)−

d2

β
σ cos τσ +

d2

β
Qk sin τσ

)
= 0,

we have

cos τσ =
β

d2

(
σ2(Ak + Pk −Qk) +AkPkQk

σ2 +Q2
k

)
and

sin τσ =
β

d2
σ

(
−σ2 +AkPk − PkQk −AkQk

σ2 +Q2
k

)
.

Furthermore, using these equalities, we can deduce

1 = cos2 τσ + sin2 τσ =
β2

d4
(σ2 + P 2

k )(σ
2 +A2

k)

σ2 +Q2
k

,

which is equivalent to

(3.15) σ4 +

(
A2

k + P 2
k − d4

β2

)
σ2 +A2

kP
2
k − d4

β2
Q2

k = 0.
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Through simple calculations, we see that

A2
k + P 2

k − d4

β2
= P 2

k +

(
ρµk + d(1 +

d

β
)

)(
ρµk + d(1− d

β
)

)
> 0

for all k ≥ 0 if β > d. Note that

A2
kP

2
k − d4

β2
Q2

k

= Dk(0, τ)

[
ρµ2k +

(
ρP0 + d+

d2

β

)
µk + d

(
P0 +

d

β
Q0

)]
.

We already know that if (3.13) is given, then Dk(0, τ) > 0 for all k ≥ 0,
and

ρP0 + d+
d2

β
> ρP0 + d− d2

β
> 0.

We determine the sign of

P0 +
d

β
Q0 = d

(
1 +

d

β
− α(1− d

β
)(1 + 3

d

β
)

)
.

Obviously, P0 +
d
βQ0 ≥ 0 if

(3.16) α ≤ β(β + d)

(β − d)(β + 3d)
.

Thus a contradiction is deduced since the left-hand side of (3.15) is
positive if (3.13) and (3.16) hold. Hence (3.15) has no positive roots
σ(τ) for all τ ≥ 0 when (3.13) and (3.16) are given.

We can easily check that β > d implies

β(β + d)

(β − d)(β + 3d)
<

β

β − d
,
β2 + βd(β − d)

β2 − d2
,
ρβ2 + βd(β − d)

ρ(β2 − d2)
.

Thus the given assumption β > d and α ≤ β(β+d)
(β−d)(β+3d) is the only case

that simultaneously satisfies (3.13), (3.14) and (3.16). Consequently
under the given assumption, (3.11) can not have λ = 0, and (u∗, v∗) is
stable at τ = 0 and it has no stability switches as τ increases. The proof
is completed.
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