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BIFURCATION ANALYSIS OF A DELAYED

PREDATOR-PREY MODEL OF PREY MIGRATION AND

PREDATOR SWITCHING

Changjin Xu, Xianhua Tang, and Maoxin Liao

Abstract. In this paper, a class of delayed predator-prey models of prey
migration and predator switching is considered. By analyzing the associ-
ated characteristic transcendental equation, its linear stability is investi-
gated and Hopf bifurcation is demonstrated. Some explicit formulae for
determining the stability and the direction of the Hopf bifurcation peri-
odic solutions bifurcating from Hopf bifurcations are obtained by using
the normal form theory and center manifold theory. Some numerical sim-
ulations for justifying the theoretical analysis are also provided. Finally,
biological explanations and main conclusions are given.

1. Introduction

In recent years, population dynamics (including stable, unstable, persistent
and oscillatory behavior) has become very popular since Vito Volterra and
James Lotka proposed the seminal models of predator-prey models in the mid-
1920s [5, 7-15]. Great attention has been paid to the dynamics properties of
the predator-prey models which have significant biological background. Many
excellent and interesting results have been obtained [6-26]. It is well known
that in a prey-predator environment, there is an inherent tendency among the
predator species to feed itself in a habit for some duration and then change its
preference to some other habit (this preferential phenomenon of change of habit
by the predator is called switching). Tansky [14] investigated the mathematical
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model of one-predator-prey system which has switching property of predation
in the following form:

(1)



















ẋ =
[

E1 − az
1+(y/x)n

]

x,

ẏ =
[

E2 − bz
1+(x/y)n

]

y,

ż = −E3 +
axz

1+(y/x)n + byz
1+(x/y)n ,

(n = 1, 2, 3, . . .), where x, y represent the prey densities and z the predator
density. The functions [a/(1+(y/x)n] and [b/(1+(x/y)n] have the characteristic
property of switching mechanism. Biologically, these functions signify the fact
that the predator rate, i.e., the frequency with which an individual of the prey
species is attacked by a predator, decreases when the population of species
becomes rare compared to the population of the other species. For n = 1,
these functions represent a simple multiplicative effect [14], whereas for n > 1,
these functions exhibit an effect that is stronger than the multiplicative one
[17].

It is known to all that a commonly observed phenomenon is the migration
of populations of differential species. Considering the seasonal migration of
prey population and switching mechanism of the predator, Bhattacharyya and
Mukhopadhyay [16] studied the following model under the conditions: n = 1
and n = 2.

(2)



















ẋ1(t) = x1(t)
[

g1(1− x1

k1
)− β1y

1+(x1/x2)n

]

,

ẋ2(t) = x2(t)
[

g2(1− x2

k2
)− β2y

1+(x2/x1)n

]

,

ẏ(t) = −µy + δ1x1y
1+(x1/x2)n

+ δ2x2y
1+(x2/x1)n

,

where x1 and x2 denote prey density in two habits, and y the predator density.
The prey population is assumed to grow logistically with a specific growth rate
gi and environmental carrying ki, β1 and β2 represent the predation rate in
the two habitats, δ1, δ2 are the corresponding conversion rates. The predation
functions β1x1y/(1+ (x1/x2)

n) and β2x2y/(1+ (x2/x1)
n) model the switching

behavior of the predator in the realm of prey group defence, i.e., there will be
less predation in the habitat having larger prey density.

Inspired by the work of [14, 16] and considering the factor that the repro-
duction of predator after predating the prey will not be instantaneous, but
mediated by some discrete time-delay required for gestation of predator [13],
we revise model (2) into the following delayed predator-prey model of prey
migration and predator switching:

(3)



















ẋ1(t) = x1(t)
[

g1(1− x1

k1
)− β1y(t−τ)x2(t−τ)

x1+x2

]

,

ẋ2(t) = x2(t)
[

g2(1− x2

k2
)− β2y(t−τ)x1(t−τ)

x1+x2

]

,

ẏ(t) = −µy + δ1x1x2(t−τ)y
x1+x2

+ δ2x1(t−τ)x2(t−τ)y
x1+x2

,
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where gi, ki, βi, δi, µ are all positive constants, n = 1, 2, 3, . . .. The more
detail biological meaning of the coefficients of the system (3), one can see [14]
or [16].

In this paper, we study the stability, the local Hopf bifurcation for system
(3). To the best of our knowledge, it is the first time to deal with the research
of Hopf bifurcation for model (3).

The remainder of the paper is organized as follows. In Section 2, we in-
vestigate the stability of the positive equilibrium and the occurrence of local
Hopf bifurcations. In Section 3, the direction and stability of the local Hopf
bifurcation are established. In Section 4, numerical simulations are carried out
to illustrate the validity of the main results. Biological explanations and some
main conclusions are drawn in Section 5.

2. Stability of the positive equilibrium and local Hopf bifurcations

In this section, we shall study the stability of the positive equilibrium and
the existence of local Hopf bifurcations. It is easy to see that Eq.(3) has an
interior equilibrium E0(x

∗
1, x

∗
2, y

∗), where

x∗1 =
µ(1 + xr)

δ
,

x∗2 =
µ(1 + xr)

xrδ
,

y∗ =
g1
β1

(1 + xr)

[

1− µ

δk1
(1 + xr)

]

=
g2
β2

(1 + xr)

[

1− µ(1 + xr)

δk2xr

]

,

where δ = δ1 + δ2 and xr = x∗1/x
∗
2 is the real positive root of the following

cubic equation:

(g1β2k2µ)x
3
r + [g1β2k2(µ− δk1)]x

2
r + [g2β1k1(k2δ − µ)]xr − g2µβ1k1 = 0.

We make the following assumptions:

µ(1 + xr) < min{δk1, δk2xr},(H1)

µ(1 + xr) > δ1.(H2)

Obviously, the interior equilibrium E0(x
∗
1, x

∗
2, y

∗) is positive equilibrium if the
condition (H1) holds.
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Let x̄1(t) = x1(t) − x∗1, x̄2(t) = x2(t) − x∗2, ȳ(t) = y(t)− y∗ and still denote
x̄i(t)(i = 1, 2), ȳ(t) by xi(t)(i = 1, 2), y(t), respectively. Then (3) becomes

(4)























































































































































































ẋ1(t) = m1x1(t) +m2x2(t) +m3x2(t− τ) +m4y(t− τ)

+ n1x
2
1(t) + n2x1(t)x2(t) + n3x

2
2(t) + n4x1(t)x2(t− τ)

+ n5x1(t)y(t− τ) + n6x2(t− τ)y(t− τ) + n7x2(t)x2(t− τ)

+ n8x2(t)y(t− τ) + l1x1(t)x2(t− τ)y(t− τ)

+ l1x2(t)x2(t− τ)y(t− τ) + l2x
2
1(t)x2(t− τ)

+ l3x1(t)x2(t)x2(t− τ) + l4x
2
2(t)x2(t− τ) + l5x

2
1(t)y(t− τ)

+ l6x1(t)x2(t)y(t− τ) + l5x
2
2(t)y(t− τ) + l7x

3
1(t)

+ l8x
2
1(t)x2(t) + l8x1(t)x

2
2(t) + l7x

3
2(t),

ẋ2(t) = p1x2(t) + p2x1(t) + p3x1(t− τ) + p4y(t− τ)

+ q1x
2
2(t) + q2x2(t)x1(t) + q3x

2
1(t) + q4x2(t)x1(t− τ)

+ q5x2(t)y(t− τ) + q6x1(t− τ)y(t− τ) + q7x1(t)x1(t− τ)

+ q8x1(t)y(t− τ) + s1x2(t)x1(t− τ)y(t− τ)

+ s1x1(t)x1(t− τ)y(t− τ) + s2x
2
2(t)x1(t− τ)

+ s3x2(t)x1(t)x1(t− τ) + s4x
2
1(t)x2(t− τ) + s5x

2
2(t)y(t− τ)

+ s6x2(t)x1(t)y(t− τ) + s5x
2
1(t)y(t− τ) + s7x

3
2(t)

+ s8x
2
2(t)x1(t) + s8x2(t)x

2
1(t) + s7x

3
1(t),

ẏ(t) = u1y(t) + u2x1(t)y(t) + u3x2(t− τ)y(t) + u4x2(t)y(t)

+ v1x
2
1(t)y(t) + v2x1(t)x2(t)y(t) + v3x

2
2(t)y(t)

+ v4x1(t)x2(t− τ)y(t) + v4x2(t)x2(t− τ)y(t),

where

m1 = g1 −
x∗1
k1

− β1x
∗
2y

∗

x∗1 + x∗2
− β1x

∗
1x

∗
2y

∗

(x∗1 + x∗2)
2
, m2 = − β1x

∗
1x

∗
2y

∗

(x∗1 + x∗2)
2
,

m3 = − β1x
∗
1y

∗

x∗1 + x∗2
, m4 = − β1x

∗
1x

∗
2

x∗1 + x∗2
, n1 = −

[

β1x
∗
2y

∗

(x∗1 + x∗2)
2
+

β1x
∗
1x

∗
2y

∗

(x∗1 + x∗2)
3

]

,

n2 = −
[

β1x
∗
2y

∗

(x∗1 + x∗2)
2
+

2β1x
∗
1x

∗
2y

∗

(x∗1 + x∗2)
3

]

, n3 = −2β1x
∗
1x

∗
2y

∗

(x∗1 + x∗2)
3
,

n4 = −
[

β1y
∗

x∗1 + x∗2
+

2β1x
∗
1y

∗

(x∗1 + x∗2)
2

]

, n5 = − 2β1x
∗
2

x∗1 + x∗2
,

n6 = − β1x
∗
2

(x∗1 + x∗2)
2
, n7 = − β1x

∗
1y

∗

(x∗1 + x∗2)
2
, n8 = −

[

β1x
∗
1

x∗1 + x∗2
+

β1x
∗
1x

∗
2

(x∗1 + x∗2)
2

]

,

l1 = − β1x
∗
1

(x∗1 + x∗2)
2
, l2 = − β1x

∗
1y

∗

(x∗1 + x∗2)
2
, l3 = − 2β1x

∗
1y

∗

(x∗1 + x∗2)
3
, l4 = − β1x

∗
1y

∗

(x∗1 + x∗2)
3
,
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l5 = − β1x
∗
1x

∗
2

(x∗1 + x∗2)
3
, l6 = − 2β1x

∗
1x

∗
2

(x∗1 + x∗2)
3
, l7 = − β1x

∗
1x

∗
2y

∗

(x∗1 + x∗2)
4
, l8 =

3β1x
∗
1x

∗
2y

∗

(x∗1 + x∗2)
4
,

p1 = g2 −
x∗2
k2

− β2x
∗
1y

∗

x∗1 + x∗2
− β2x

∗
1x

∗
2y

∗

(x∗1 + x∗2)
2
, p2 = − β2x

∗
1x

∗
2y

∗

(x∗1 + x∗2)
2
, p3 = − β2x

∗
2y

∗

x∗1 + x∗2
,

p4 = − β2x
∗
1x

∗
2

x∗1 + x∗2
, q1 = −

[

β2x
∗
1y

∗

(x∗1 + x∗2)
2
+

β2x
∗
1x

∗
2y

∗

(x∗1 + x∗2)
3

]

,

q2 = −
[

β2x
∗
1y

∗

(x∗1 + x∗2)
2
+

2β2x
∗
1x

∗
2y

∗

(x∗1 + x∗2)
3

]

, q3 = −2β2x
∗
1x

∗
2y

∗

(x∗1 + x∗2)
3
,

q4 = −
[

β2y
∗

x∗1 + x∗2
+

2β2x
∗
2y

∗

(x∗1 + x∗2)
2

]

, q5 = − 2β2x
∗
1

x∗1 + x∗2
, q6 = − β2x

∗
1

(x∗1 + x∗2)
2
,

q7 = − β2x
∗
2y

∗

(x∗1 + x∗2)
2
, q8 = −

[

β2x
∗
2

x∗1 + x∗2
+

β2x
∗
1x

∗
2

(x∗1 + x∗2)
2

]

, s1 = − β2x
∗
2

(x∗1 + x∗2)
2
,

s2 = − β2x
∗
2y

∗

(x∗1 + x∗2)
2
, s3 = − 2β2x

∗
2y

∗

(x∗1 + x∗2)
3
, s4 = − β2x

∗
2y

∗

(x∗1 + x∗2)
3
,

s5 = − β2x
∗
2x

∗
1

(x∗1 + x∗2)
3
, s6 = − 2β2x

∗
1x

∗
2

(x∗1 + x∗2)
3
, s7 = − β2x

∗
1x

∗
2y

∗

(x∗1 + x∗2)
4
,

l8 =
3β2x

∗
1x

∗
2y

∗

(x∗1 + x∗2)
4
, u1 =

δ1x
∗
1x

∗
2

x∗1 + x∗2
− µ, u2 =

δ1x
∗
1

x∗1 + x∗2
+

δ1x
∗
1x

∗
2

(x∗1 + x∗2)
2
,

u3 =
δ1x

∗
1

x∗1 + x∗2
, u4 =

δ1x
∗
1x

∗
2

(x∗1 + x∗2)
2
, v1 =

δ1x
∗
2

(x∗1 + x∗2)
2
+

δ1x
∗
1x

∗
2

(x∗1 + x∗2)
3
,

v2 =
δ1x

∗
2

x∗1 + x∗2
+

2δ1x
∗
1x

∗
2

(x∗1 + x∗2)
3
, v3 =

δ1x
∗
1x

∗
2

(x∗1 + x∗2)
3
, v4 =

δ1
x∗1 + x∗2

.

The linearization of Eq.(4) at (0, 0, 0) is

(5)











ẋ1(t) = m1x1(t) +m2x2(t) +m3x2(t− τ) +m4y(t− τ),

ẋ2(t) = p2x1(t) + p1x2(t) + p3x1(t− τ) + p4y(t− τ),

ẏ(t) = u1y(t),

whose characteristic equation is

(6) (λ−u1)
[

λ2 − (m1 + p1)λ+m1p1 − (p2 + p3)m2 − (p2 + p3)m3e
−λτ

]

= 0.

Obviously, Eq.(6) has the root λ = u1. Under the assumption (H2), we know
that λ = u1 < 0.

In the following, we only need to investigate the distribution of roots of the
following equation:

(7) λ2 − (m1 + p1)λ+m1p1 − (p2 + p3)m2 − (p2 + p3)m3e
−λτ = 0.

In order to investigate the distribution of roots of the transcendental equation
(7), the following lemma is useful.

Lemma 2.1 ([2]). For the transcendental equation

P (λ, e−λτ1 , · · · , e−λτm) = λn + p
(0)
1 λn−1 + · · ·+ p

(0)
n−1λ+ p(0)n
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+
[

p
(1)
1 λn−1 + · · ·+ p

(1)
n−1λ+ p(1)n

]

e−λτ1 + · · ·

+
[

p
(m)
1 λn−1 + · · ·+ p

(m)
n−1λ+ p(m)

n

]

e−λτm = 0,

as (τ1, τ2, τ3, . . . , τm) vary, the sum of orders of the zeros of P (λ, e−λτ1 , . . .,
e−λτm) in the open right half plane can change, and only a zero appears on or

crosses the imaginary axis.

For τ = 0, (7) becomes

(8) λ2 − (m1 + p1)λ+m1p1 − (p2 + p3)(m2 +m3) = 0.

A set of necessary and sufficient conditions for all roots of (8) to have a negative
real part is given by the well-known Routh-Hurwitz criteria in the following
form:

(H3) m1 + p1 < 0, m1p1 − (p2 + p3)(m2 +m3) < 0.

For ω > 0, iω is a root of (7) if and only if

−ω2 − i(m1 + p1)ω+m1p1 − (p2 + p3)m2 − (p2 + p3)m3(cosωτ − i sinωτ) = 0.

Separating the real and imaginary parts, we get

(9)

{

(p2 + p3)m3 cosωτ = m1p1 − (p2 + p3)m2 − ω2,

(p2 + p3)m3 sinωτ = (m1 + p1)ω,

which leads to

(10) ω4+[m2
1+p

2
1+2(p2+p3)m2]ω

2+[m1p1−(p2+p3)m2]
2−[(p2+p3)m3]

2 = 0.

Let us denote

∆ = [m2
1 + p21 + 2(p2 + p3)m2]

2 − 4{[m1p1 − (p2 + p3)m2]
2 − [(p2 + p3)m3]

2}.
Then the roots of biquadratic equation (10) are given by

ω2
± =

1

2

{

− [m2
1 + p21 + 2(p2 + p3)m2]±

√
∆
}

.

In the sequel, we consider the five cases:
(K1) ∆ < 0 implies that Eq.(10) has no purely imaginary roots of the form
±iω;
(K2) ∆ > 0, [m1p1−(p2+p3)m2]

2 > [(p2+p3)m3]
2,m2

1+p
2
1+2(p2+p3)m2 > 0

imply that Eq.(10) has no purely imaginary roots of the form ±iω;
(K3) ∆ > 0, [m1p1−(p2+p3)m2]

2 < [(p2+p3)m3]
2,m2

1+p
2
1+2(p2+p3)m2 > 0

imply that Eq.(10) has one purely imaginary roots of the form ±iω+;
(K4) ∆ > 0, [m1p1−(p2+p3)m2]

2 < [(p2+p3)m3]
2,m2

1+p
2
1+2(p2+p3)m2 < 0

imply that Eq.(10) has a pair of purely imaginary roots of the form ±iω+;
(K5) ∆ > 0, [m1p1−(p2+p3)m2]

2 > [(p2+p3)m3]
2,m2

1+p
2
1+2(p2+p3)m2 < 0

imply that Eq.(10) has two purely imaginary roots of the form ±iω±.
For cases (K1) and (K2), the characteristic Eq.(10) has no purely imaginary

roots. This shows that the positive interior equilibrium point E0 is absolutely
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stable (locally asymptotically stable for all τ ≥ 0) under the assumptions (H1)-
(H3) with the condition (K1) or (K2).

We now consider cases (K3), (K4) and (K5). In cases (K3) and (K4), Eq.(10)
has a pair of purely imaginary roots ±iω+ and ω+ are given by

ω+ =

√

1

2

{

− [m2
1 + p21 + 2(p2 + p3)m2] +

√
∆
}

.

From (9), we have

sinω+τ =
(m1 + p1)ω+

(p2 + p3)m3
< 0, cosω+τ =

m1p1 − (p2 + p3)m2 − ω2
+

(p2 + p3)m3
< 0,

and thus

τ+k =
1

ω+

[

arcsin
(m1 + p1)ω+

(p2 + p3)m3
+ 2kπ

]

(k = 0, 1, 2, . . .).

Let λ(τ) = α(τ) + iω(τ) be a root of (7) near τ = τ+k , and α(τ+k ) = 0, and

ω(τ+k ) = ω+. Due to functional differential equation theory, for every τ+k , k =
0, 1, 2, 3, . . . , there exists ε > 0 such that λ(τ) is continuously differentiable
in τ for |τ − τ+k | < ε. Substituting λ(τ) into the left hand of (7) and taking
derivative with respect to τ , we have

(11)

[

dλ

dτ

]−1

= − 2eλτ

(p2 + p3)m3
+

(m1 + p1)e
λτ

(p2 + p3)m3
− τ

λ
.

Then we obtain
[

d(Reλ(τ))

dτ

]−1

τ=τ+

k

= Re

{

− 2eλτ

(p2 + p3)m3

}

τ=τ+

k

+Re
{ (m1 + p1)e

λτ

(p2 + p3)m3

}

τ=τ+

k

=
(m1 + p1) sinω+τ

+
k − 2ω+ cosω+τ

+
k

ω+(p2 + p3)m3
> 0.

In case (K5), Eq.(10) has two pair of purely imaginary roots ±iω± and ω± is
given by

ω± =

√

1

2

{

− [m2
1 + p21 + 2(p2 + p3)m2]±

√
∆
}

.

From (9), we have

sinω±τ =
(m1 + p1)ω±

(p2 + p3)m3
< 0, cosω±τ =

m1p1 − (p2 + p3)m2 − ω2
±

(p2 + p3)m3
< 0,

and thus

(12) τ±k =
1

ω±

[

arcsin
(m1 + p1)ω±

(p2 + p3)m3
+ 2kπ

]

(k = 0, 1, 2, . . .).

Similarly, let λ(τ) = α(τ)+ iω(τ) be a root of (7) near τ = τ±k , and α(τ±k ) = 0,

and ω(τ±k ) = ω±. Due to functional differential equation theory, for every
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τ±k , k = 0, 1, 2, 3, . . . , there exists ε > 0 such that λ(τ) is continuously differ-

entiable in τ for |τ − τ±k | < ε. Substituting λ(τ) into the left hand of (7) and
taking derivative with respect to τ , we have

[

dλ

dτ

]−1

= − 2eλτ

(p2 + p3)m3
+

(m1 + p1)e
λτ

(p2 + p3)m3
− τ

λ
.

Then we obtain

[

d(Reλ(τ))

dτ

]−1

τ=τ+

k

= Re

{

− 2eλτ
+

k

(p2 + p3)m3

}

τ=τ+

k

+Re

{

(m1 + p1)e
λτ+

k

(p2 + p3)m3

}

τ=τ+

k

=
(m1 + p1) sinω+τ

+
k − 2ω+ cosω+τ

+
k

ω+(p2 + p3)m3

=

√
∆

(p2 + p3)2m2
3

> 0,

[

d(Reλ(τ))

dτ

]−1

τ=τ−

k

= Re

{

− 2eλτ
−

k

(p2 + p3)m3

}

τ=τ−

k

+Re

{

(m1 + p1)e
λτ−

k

(p2 + p3)m3

}

τ=τ−

k

=
(m1 + p1) sinω−τ

−

k − 2ω+ cosω−τ
−

k

ω−(p2 + p3)m3

=
−
√
∆

(p2 + p3)2m2
3

< 0.

The above analysis leads to the following results on the stability and Hopf
bifurcation.

Theorem 2.2. For system (3),
(i) under the conditions (H1)-(H3), if (K1) or (K2) holds, then the positive

interior equilibrium point E0 is locally asymptotically stable for all τ ≥ 0;
(ii) under the conditions (H1)-(H3), if (K3) or (K4) holds, the positive in-

terior equilibrium point E0 is locally asymptotically stable for τ ∈ [0, τ0) and

unstable for τ ≥ τ0. System (3) undergoes a Hopf bifurcation at the positive

interior equilibrium point E0 when τ = τ+k , k = 0.1, 2, . . . ;
(iii) under the conditions (H1)-(H3), if (K5) holds, then there exists a pos-

itive integer n such that the positive interior equilibrium point E0 switches

n times from stability to instability to stability and so on and the positive

interior equilibrium point E0 is locally asymptotically stable whenever τ ∈
[0, τ+0 )

⋃

(τ−0 , τ
+
1 )

⋃ · · ·⋃(τ−n−1, τ
+
n ) and is unstable whenever τ ∈ (τ+0

⋃

τ−0 )
⋃

(τ+1
⋃

τ−1 )
⋃ · · ·⋃(τ+n−1, τ

−

n−1) and τ > τ+n . System (3) undergoes a Hopf

bifurcation at the positive interior equilibrium point E0 when τ = τ±k , k =
0, 1, 2, . . . .
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3. Direction and stability of the Hopf bifurcation

In the previous section, we obtained conditions for Hopf bifurcation to occur
when τ = τ±k , k = 0, 1, 2, . . . . In this section, we shall derive the explicit formu-
lae determining the direction, stability, and period of these periodic solutions
bifurcating from the positive equilibrium E0(x

∗
1, x

∗
2, y

∗) at these critical value
of τ , by using techniques from normal form and center manifold theory [1].
Throughout this section, we always assume that system (3) undergoes Hopf bi-
furcation at the positive equilibrium E0(x

∗
1, x

∗
2, y

∗) for τ = τ±k , k = 0, 1, 2, . . . ,
and then ±iω0 are corresponding purely imaginary roots of the characteristic
equation at the positive equilibrium E0(x

∗
1, x

∗
2, y

∗).
For convenience, let x̄i(t) = xi(τt) (i = 1, 2, 3) and τ = τ±k + µ, where τ±k

is defined by (12) and µ ∈ R, drop the bar for the simplification of notations,
then the system (4) can be written as an FDE in C = C([−1, 0]), R3) as

(13) u̇(t) = Lµ(ut) + F (µ, ut),

where u(t) = (x1(t), x2(t), y(t))
T ∈ C and ut(θ) = u(t+ θ) = (x1(t+ θ), x2(t+

θ), y(t+ θ))T ∈ C, and Lµ : C → R,F : R× C → R are given by

Lµφ = (τ±k + µ)





m1 m2 0
p2 p1 0
0 0 µ1









φ1(0)
φ2(0)
φ3(0)





+ (τ±k + µ)





0 m3 m4

p3 0 p4
0 0 0









φ1(−1)
φ2(−1)
φ3(−1)



(14)

and

(15) F (µ, φ) = (τ±k + µ)





F1

F2

F3



 ,

respectively, where φ(θ) = (φ1(θ), φ2(θ), φ3(θ))
T ∈ C and

F1 = n1φ
2
1(0) + n2φ1(0)φ2(0) + n3φ

2
2(0) + n4φ1(0)φ2(−1)

+ n5φ1(0)φ3(−1) + n6φ2(−1)φ3(−1) + n7φ2(0)φ2(−1)

+ n8φ2(0)φ3(−1) + l1φ1(0)φ2(−1)φ3(−1) + l1φ2(0)φ2(−1)φ3(−1)

+ l2φ
2
1(0)φ2(−1) + l3φ1(0)φ2(0)φ2(−1) + l4φ

2
2(0)φ2(−1)

+ l5φ
2
1(0)φ3(−1) + l6φ1(0)φ2(0)φ3(−1) + l5φ

2
2(0)φ3(−1)

+ l7φ
3
1(0) + l8φ

2
1(0)φ2(0) + l8φ1(0)φ

2
2(0) + l7φ

3
2(0),

F2 = + q1φ
2
2(0) + q2φ2(0)φ1(0) + q3φ

2
1(0) + q4φ2(0)φ1(−1)

+ q5φ2(0)φ3(−1) + q6φ1(−1)φ3(−1) + q7φ1(0)φ1(−1)

+ q8φ1(0)φ3(−1) + s1φ2(0)φ1(−1)φ3(−1) + s1φ1(0)φ1(−1)φ3(−1)

+ s2φ
2
2(0)φ1(−1) + s3φ2(0)φ1(0)φ1(−1) + s4φ

2
1(0)φ2(−1)
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+ s5φ
2
2(0)φ(−1) + s6φ2(0)φ1(0)φ3(−0) + s5φ

2
1(0)φ3(−1)

+ s7φ
3
2(0) + s8φ

2
2(0)φ1(0) + s8φ2(0)φ

2
1(0) + s7φ

3
1(0),

F3 = + u2φ1(0)φ3(0) + u3φ2(−1)φ3(0) + u4φ2(0)φ3(0) + v1φ
2
1(0)φ3(0)

+ v2φ1(0)φ2(0)φ3(0) + v3φ
2
2(0)φ3(0) + v4φ1(0)φ2(−1)φ3(0)

+ v4φ2(0)φ2(−1)φ3(0).

From the discussion in Section 2, we know that if µ = 0, then the system (13)
undergoes a Hopf bifurcation at the positive equilibrium E0(x

∗
1, x

∗
2, y

∗) and the
associated characteristic equation of system (13) has a pair of simple imaginary
roots ±ω0τ

±

k .
By the representation theorem, there is a matrix function with bounded

variation components η(θ, µ), θ ∈ [−1, 0] such that

(16) Lµφ =

∫ 0

−1

dη(θ, µ)φ(θ) for φ ∈ C.

In fact, we can choose

η(θ, µ) = (τ±k + µ)





m1 m2 m3

n1 n2 n3

0 0 l1



 δ(θ)

− (τ±k + µ)





0 0 0
0 0 0
l2 l3 l4



 δ(θ + 1),(17)

where δ is the Dirac delta function.
For φ ∈ C([−1, 0], R3), define

(18) A(µ)φ =

{ dφ(θ)
dθ , −1 ≤ θ < 0,

∫ 0

−1
dη(s, µ)φ(s), θ = 0

and

(19) Rφ =

{

0, −1 ≤ θ < 0,
F (µ, φ), θ = 0.

Then (13) is equivalent to the abstract differential equation

(20) u̇t = A(µ)ut +R(µ)ut,

where ut(θ) = u(t+ θ), θ ∈ [−1, 0].
For ψ ∈ C([0, 1], (R3)∗), define

A∗ψ(s) =

{

− dψ(s)
ds , s ∈ (0, 1],

∫ 0

−1
dηT (t, 0)ψ(−t), s = 0.

For φ ∈ C([−1, 0], R3) and ψ ∈ C([0, 1], (R3)∗), define the bilinear form

〈ψ, φ〉 = ψ(0)φ(0) −
∫ 0

−1

∫ θ

ξ=0

ψT (ξ − θ)dη(θ)φ(ξ)dξ,
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where η(θ) = η(θ, 0), the A = A(0) and A∗ are adjoint operators. By the
discussions in Section 2, we know that ±iω0τ

±

k are eigenvalues of A(0), and they

are also eigenvalues of A∗ corresponding to iω0τ
±

k and −iω0τ
±

k , respectively.
By direct computation, we can obtain

q(θ) = (1, α, β)T eiω0τ
±

k
θ, q∗(s) =M(1, α∗, β∗)eiω0τ

±

k
s,M =

1

B
,

where

α =
(m1 − iω0)p4 − (p2 + p3e

−iω0τ
±

k )m4

(m2 +m3e−iω0τ
±

k )p4 + (iω0 − p1)m4

,

β =
(m2 +m3e

−iω0τ
±

k )(p2 + p3e
−iω0τ

±

k ) + (iω0 − p1)(m1 − iω0)

(m2 +m3e−iω0τ
±

k )p4e−iω0τ
±

k + (iω0 − p1)m4e−iω0τ
±

k

,

α∗ = − m1 + iω0

p2 + p3e−iω0τ
±

k

,

β∗ = − (m4 + p4α
∗)e−iω0τ

±

k

iω0 + µ1
,

B = 1 + ᾱα∗ + β̄β∗ + τ±k [p3α
∗ +m3ᾱ+ (m4 + p4α

∗)β̄].

Furthermore, 〈q∗(s), q(θ)〉 = 1 and 〈q∗(s), q̄(θ)〉 = 0.
Next, we use the same notations as those in Hassard [1] and we first compute

the coordinates to describe the center manifold C0 at µ = 0. Let ut be the
solution of Eq.(13) when µ = 0.

Define

(21) z(t) = 〈q∗, ut〉, W (t, θ) = ut(θ) − 2Re{z(t)q(θ)}
on the center manifold C0, and we have

(22) W (t, θ) =W (z(t), z̄(t), θ),

where

(23) W (z(t), z̄(t), θ) =W (z, z̄) =W20
z2

2
+W11zz̄ +W02

z̄2

2
+ · · · ,

and z and z̄ are local coordinates for center manifold C0 in the direction of q∗

and q̄∗. Noting that W is also real if ut is real, we consider only real solutions.
For solutions ut ∈ C0 of (13),

ż(t) = iω0τ
±

k z + q̄∗(θ)f(0,W (z, z̄, θ) + 2Re{zq(θ)} def
= iω0τ

±

k z + q̄∗(0)f0.

That is
ż(t) = iω0τ

±

k z + g(z, z̄),

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ · · · .

Hence, we have

g(z, z̄) = q̄∗(0)f0(z, z̄) = f(0, yt) = K20z
2 +K11zz̄ +K02z̄

2 +K21z
2z̄ + h.o.t.,
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where

K20 = D̄τ±k

[

n1 + n2α+ n3α
2 + n4αe

−iω0τ
±

k + n5βe
−iω0τ

±

k + n6αβe
−2iω0τ

±

k

+ n7α
2e−iω0τ

±

k + n8αβe
−iω0τ

±

k + ᾱ∗

(

q1α
2 + q2α+ q3 + q4αe

−iω0τ
±

k

+q5αβe
−iω0τ

±

k + q6βe
−2iω0τ

±

k + q7e
−iω0τ

±

k + q8βe
−iω0τ

±

k

)

+ β̄∗

(

u2β

+u3αβe
−iω0τ

±

k + u4αβ
)]

,

K11 = D̄τ±k

[

2n1 + 2n2Re{α}+ 1n3|α|2 + 2n4Re{ᾱeiω0τ
±

k }

+ 2n5Re{β̄eiω0τ
±

k }+ 2n6Re{β̄β}

+ 2n7|α|2eiω0τ
±

k + 2n8Re{ᾱβe−iω0τ
±

k }

+ ᾱ∗

(

2|α|2q1+2q2Re{α}+ 2q3+2q4Re{ᾱe−iω0τ
±

k }+q5Re{ᾱβe−iω0τ
±

k }

+ 2q6Re{β}+ q7

(

eiω0τ
±

k + e−iω0τ
±

k + q8Re{β̄eiω0τ
±

k }
))

+β̄∗

(

2u2Re{β}+ 2u3Re{ᾱβe−iω0τ
±

k }+ 2u4Re{β̄β}
)]

,

K02 = D̄τ±k

[

n1 + n2ᾱ+ n3ᾱ
2 + n4ᾱe

iω0τ
±

k + n5β̄e
iω0τ

±

k + n6ᾱβ̄e
2iω0τ

±

k

+ n7ᾱ
2e2iω0τ

±

k + n8ᾱβ̄e
iω0τ

±

k + ᾱ∗

(

q1ᾱ
2 + q2ᾱ+ q3 + q4ᾱe

iω0τ
±

k

+q5ᾱβ̄e
iω0τ

±

k + q6β̄e
2iω0τ

±

k + q7e
iω0τ

±

k + q8β̄e
iω0τ

±

k

)

+β̄∗

(

u2β̄ + u3ᾱβ̄e
iω0τ

±

k + u4ᾱβ̄
)]

,

K21 = D̄τ±k

{

n1

[

W
(1)
20 (0) + 2W

(1)
11 (0)

]

+ n2

[

1

2
ᾱW

(1)
20 (0) +

1

2
W

(2)
20 (0) + αW

(1)
11 (0) +W

(2)
11 (0)

]

+ n3

[

ᾱW
(2)
20 (0) + 2αW

(2)
11 (0)

]

+ n4

[

1

2
ᾱW

(1)
20 (0)eiω0τ

±

k +
1

2
W

(2)
20 (0) + αe−iω0τ

±

k W
(1)
11 (0) +W

(2)
11 (0)

]

+ n5

[

1

2
β̄W

(1)
20 (0)eiω0τ

±

k +
1

2
W

(3)
20 (0) + βe−iω0τ

±

k W
(1)
11 (0) +W

(3)
11 (0)

]

+ n6

[

1

2
β̄W

(2)
20 (0)eiω0τ

±

k +
1

2
ᾱeiω0τ

±

k W
(3)
20 (0)

+βe−iω0τ
±

k W
(2)
11 (0) + αe−iω0τ

±

k W
(3)
11 (0)

]

+ n7

[

ᾱeiω0τ
±

k W
(3)
20 (0) + 2αW

(2)
11 (0)

]
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+ n8

[

1

2
β̄W

(2)
20 (0)eiω0τ

±

k +
1

2
ᾱW

(3)
20 (0) + βe−iω0τ

±

k W
(2)
11 (0) + αW

(3)
11 (0)

]

+ l1

[

2Re{ᾱβ}+ αβe−2iω0τ
±

k

]

+ l1

[

α2e−iω0τ
±

k + 2Re{β}|α|2β̄e−iω0τ
±

k

]

+ l2

[

ᾱeiω0τ
±

k + 2αe−iω0τ
±

k

]

+ l3

[

α2 + |α|2 + 2αe−2iω0τ
±

k

]

+ l4

[

2α2ᾱeiω0τ
±

k + α2ᾱe−2iω0τ
±

k

]

+ l5

[

β̄eiω0τ
±

k + 2βe−iω0τ
±

k

]

+ l7
[

3 + 3α2ᾱ
]

+ l8
[

ᾱ+ 2α+ 2|α|2 + α2
]

+ ᾱ∗

[

q1

(

ᾱW
(2)
20 (0) + 2W

(2)
11 (0)

)

+ q2

(

1

2
ᾱW

(1)
20 (0) +

1

2
W

(2)
20 (0) + αW

(1)
11 (0) +W

(2)
11 (0)

)

+ q3

(

W
(1)
20 (0) + 2W

(2)
11 (0)

)

+ q4

(

1

2
ᾱW

(1)
20 (−1)+

1

2
eiω0τ

±

k W
(2)
20 (0)+αW

(1)
11 (−1)+W

(2)
11 (0)e−iω0τ

±

k

)

+ q5

(

1

2
β̄eiω0τ

±

k W
(2)
20 (0) +

1

2
ᾱW

(3)
20 (0) + βe−iω0τ

±

k W
(2)
11 (0)+αW

(3)
11 (0)

)

+ q6

(

1

2
β̄eiω0τ

±

k W
(1)
20 (−1) +

1

2
eiω0τ

±

k W
(3)
20 (−1)

+βe−iω0τ
±

k W
(1)
11 (−1) + e−iω0τ

±

k W
(3)
11 (−1)

)

+ q7

(

1

2
eiω0τ

±

k W
(1)
20 (0) +

1

2
W

(1)
20 (−1) + e−iω0τ

±

k W
(1)
11 (0) +W

(1)
11 (−1)

)

+ q8

(

1

2
β̄eiω0τ

±

k W
(1)
20 (0) +

1

2
W

(2)
20 (0) + βe−iω0τ

±

k W
(1)
11 (0) +W

(2)
11 (0)

)

+ s1

(

αβ̄ + 2Re{ᾱβeiω0τ
±

k }
)

+ s1

(

2Re{β}+ βeiω0τ
±

k

)

+ s2

(

α2eiω0τ
±

k + 2|α|2e−iω0τ
±

k

)

+ s3

(

ᾱeiω0τ
±

k + 2Re{α}e−iω0τ
±

k

)

+ s4

(

ᾱeiω0τ
±

k + 2αe−iω0τ
±

k

)

+ s5

(

α2β̄eiω0τ
±

k + |α|2e−iω0τ
±

k + |α|2βe−iω0τ
±

k

)

+ s6

(

αβ + 2Re{ᾱβe−iω0τ
±

k }
)

+ s7
(

3 + 3α2ᾱ
)

+ s8
(

α2 + 3α+ |α|2 + ᾱ
)]

+ β̄∗

[

u2

(

1

2
β̄W

(1)
20 (0) +

1

2
W

(2)
20 (0) + αW

(1)
11 (0) +W

(2)
11 (0)

)

+ u3

(

1

2
β̄eiω0τ

±

k W
(2)
20 (0)+

1

2
ᾱW

(3)
20 (0) + βe−iω0τ

±

k W
(2)
11 (0) + αW

(3)
11 (0)

)
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+ u4

(

1

2
β̄W

(2)
20 (0) +

1

2
ᾱW

(3)
20 (0) + βW

(2)
11 (0) + αW

(3)
11 (0)

)

+v1
(

β̄ + 2β
)

+ v2

(

αβ +Re{ᾱβe−iω0τ
±

k }
)

+ v3

(

α2β̄eiω0τ
±

k + 2|α|2βe−iω0τ
±

k

)

+v4 (αβ+Re{ᾱβ})+v4
(

α2βe−iω0τ
±

k +|α|2βeiω0τ
±

k +|α|2βe−iω0τ
±

k

)]

}

.

Then we obtain

g20 = 2K20, g11 = K11, g02 = 2K02, g21 = 2K21.

For unknown W
(i)
20 (0),W

(i)
11 (0),W

(i)
20 (−1),W

(i)
11 (−1), (i = 1, 2, 3) in g21, we still

need to compute them.
From (20) and (21), we have

(24)

W
′

=

{

AW − 2Re{q̄∗(0)f̄q(θ)}, −1 ≤ θ < 0,
AW − 2Re{q̄∗(0)f̄q(θ)} + f̄ , θ = 0

def
= AW +H(z, z̄, θ),

where

(25) H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · · .

Comparing the coefficients, we obtain

(26) (A− 2iτ±k ω0)W20 = −H20(θ),

(27) AW11(θ) = −H11(θ),

· · · · · · .
And we know that for θ ∈ [−1, 0),

(28) H(z, z̄, θ) = −q̄∗(0)f0q(θ)− q∗(0)f̄0q̄(θ) = −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ).

Comparing the coefficients of (28) with (25) gives that

(29) H20(θ) = −g20q(θ) − ḡ02q̄(θ),

(30) H11(θ) = −g11q(θ) − ḡ11q̄(θ).

From (26), (29) and the definition of A, we get

(31) Ẇ20(θ) = 2iω0τ
±

k W20(θ) + g20q(θ) + ¯g02q̄(θ).

Noting that q(θ) = q(0)eiω0τ
±

k
θ, we have

(32) W20(θ) =
ig20

ω0τ
±

k

q(0)eiω0τ
±

k
θ +

iḡ02

3ω0τ
±

k

q̄(0)e−iω0τ
±

k
θ + E1e

2iω0τ
±

k
θ,

where E1 = (E
(1)
1 , E

(2)
1 , E

(3)
1 )T ∈ R3 is a constant vector.

Similarly, from (27), (30) and the definition of A, we have

(33) Ẇ11(θ) = g11q(θ) + ¯g11q̄(θ),
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(34) W11(θ) = − ig11

ω0τ
±

k

q(0)eiω0τ
±

k
θ +

iḡ11

ω0τ
±

k

q̄(0)e−iω0τ
±

k
θ + E2,

where E2 = (E
(1)
2 , E

(2)
2 , E

(3)
2 )T ∈ R3 is a constant vector.

In what follows, we shall seek appropriate E1, E2 in (32) and (34), respec-
tively. It follows from the definition of A, (29) and (30) that

(35)

∫ 0

−1

dη(θ)W20(θ) = 2iω0τ
±

k W20(0)−H20(0)

and

(36)

∫ 0

−1

dη(θ)W11(θ) = −H11(0),

where η(θ) = η(0, θ).
From (26), we have

(37) H20(0) = −g20q(0)− ¯g02q̄(0) + 2τ±k (H1, H2, H3)
T ,

(38) H11(0) = −g11q(0)− ¯g11(0)q̄(0) + 2τ±k (P1, P2, P3)
T ,

where

H1 = n1 + n2α+ n3α
2 + n4αe

−iω0τ
±

k + n5βe
−iω0τ

±

k

+ n6αβe
−2iω0τ

±

k + n7α
2e−iω0τ

±

k + n8αβe
−iω0τ

±

k ,

H2 = q1α
2 + q2α+ q3 + q4αe

−iω0τ
±

k + q5αβe
−iω0τ

±

k

+ q6βe
−2iω0τ

±

k + q7e
−iω0τ

±

k + q8βe
−iω0τ

±

k ,

H3 = u2β + u3αβe
−iω0τ

±

k + u4αβ,

P1 = 2n1 + 2n2Re{α}+ 1n3|α|2 + 2n4Re{ᾱeiω0τ
±

k }+ 2n5Re{β̄eiω0τ
±

k }

+ 2n6Re{β̄β}+ 2n7|α|2eiω0τ
±

k + 2n8Re{ᾱβe−iω0τ
±

k },

P2 = 2|α|2q1 + 2q2Re{α}+ 2q3 + 2q4Re{ᾱe−iω0τ
±

k }+ q5Re{ᾱβe−iω0τ
±

k }

+ 2q6Re{β}+ q7(e
iω0τ

±

k + e−iω0τ
±

k + q8Re{β̄eiω0τ
±

k },

P3 = 2u2Re{β}+ 2u3Re{ᾱβe−iω0τ
±

k }+ 2u4Re{β̄β}.

Noting that
(

iω0τ
±

k I −
∫ 0

−1

eiω0τ
±

k
θdη(θ)

)

q(0) = 0,

(

−iω0τ
±

k I −
∫ 0

−1

e−iω0τ
±

k
θdη(θ)

)

q̄(0) = 0
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and substituting (32) and (37) into (35), we have
(

2iω0τ
±

k I −
∫ 0

−1

e2iω0τ
±

k
θdη(θ)

)

E1 = 2τ±k (H1, H2, H3)
T .

That is




2iω0 −m1 −m2 −m3e
iω0τ

±

k −m4e
iω0τ

±

k

−p2 − p3 iω0 − p1 −p4eiω0τ
±

k

0 0 iω0 − µ1



E1 = 2(H1, H2, H3)
T .

It follows that

(39) E
(1)
1 =

∆11

∆1
, E

(2)
1 =

∆12

∆1
, E

(3)
1 =

∆13

∆1
,

where

∆1 = det





2iω0 −m1 −m2 −m3e
iω0τ

±

k −m4e
iω0τ

±

k

−p2 − p3 iω0 − p1 −p4eiω0τ
±

k

0 0 iω0 − µ1



 ,

∆11 = 2det





H1 −m4e
iω0τ

±

k

H2 iω0 − p1 −p4eiω0τ
±

k

H3 0 iω0 − µ1



 ,

∆12 = 2det





2iω0 −m1 H1 −m4e
iω0τ

±

k

−p2 − p3 H2 −p4eiω0τ
±

k

0 H3 iω0 − µ1



 ,

∆13 = 2det





2iω0 −m1 −m2 −m3e
iω0τ

±

k H1

−p2 − p3 iω0 − p1 H2

0 0 H3



 .

Similarly, substituting (33) and (38) into (36), we have
(∫ 0

−1

dη(θ)

)

E2 = 2τ±k (P1, P2, P3)
T .

That is




m1 m2 +m3 m4

p2 p1 p4
0 0 µ1



E2 = 2(−P1,−P2,−P3)
T .

It follows that

(40) E
(1)
2 =

∆21

∆2
, E

(2)
2 =

∆22

∆2
, E

(3)
2 =

∆23

∆2
,

where

∆2 = det





m1 m2 +m3 m4

p2 p1 p4
0 0 µ1



 ,
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∆21 = 2det





H1 m2 +m3 m4

H2 p1 p4
H3 0 µ1



 ,

∆22 = 2det





m1 H1 m4

p2 H2 p4
0 H3 µ1



 ,

∆23 = 2det





m1 m2 +m3 H1

p2 p1 H2

0 0 H3



 .

From (32), (34), (39) and (40), we can calculate g21 and derive the following
values:

c1(0) =
i

2ω0τ
±

k

(

g20g11 − 2|g11|2 −
|g02|2
3

)

+
g21
2
,

µ2 = − Re{c1(0)}
Re{λ′(τ±k )} ,

β2 = 2Re(c1(0)),

T2 = − Im{c1(0)}+ µ2Im{λ′

(τ±k )}
ω0τ

±

k

.

These formulaes give a description of the Hopf bifurcation periodic solutions
of (13) at τ = τ±k (k = 0, 2, 3, . . .) on the center manifold. From the discussion
above, we have the following result:

Theorem 3.1. The periodic solution is supercritical (subcritical) if µ2 > 0
(µ2 < 0); the bifurcating periodic solutions are orbitally asymptotically stable

with asymptotical phase (unstable) if β2 < 0 (β2 > 0); the periods of the bifur-

cating periodic solutions increase (decrease) if T2 > 0 (T2 < 0).

Remark 3.2. A τT -periodic solution of (13) is a T -periodic solution of (5).

4. Numerical examples

In this section, we present some numerical results of system (3) to verify
the analytical predictions obtained in the previous section. From Section 3,
we may determine the direction of a Hopf bifurcation and the stability of the
bifurcation periodic solutions. Let us consider the following system:

(41)



















ẋ1(t) = x1(t)
[

0.5(1− 0.2x1)− 0.5y(t−τ)x2(t−τ)
x1+x2

]

,

ẋ2(t) = x2(t)
[

0.5(1− 0.3x2)− 0.8y(t−τ)x1(t−τ)
x1+x2

]

,

ẏ(t) = −0.5y + 0.3x1x2(t−τ)y
x1+x2

+ 0.2x1(t−τ)x2(t−τ)y
x1+x2

which has a positive equilibrium E0(x
∗
1, x

∗
2, y

∗) ≈ (4.4437, 1.2904, 0.4941) and
satisfies the conditions indicated in Theorem 2.2. When τ = 0, the positive
equilibrium E0 ≈ (4.4437, 1.2904, 0.4941) is asymptotically stable. Take k = 0
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for example, by some complicated computation by means of Matlab 7.0, we get
ω0 ≈ 1.0328, τ0 ≈ 0.53, λ

′

(τ0) ≈ 0.7511 − 9.5401i. Thus we can calculate the
following values:

c1(0) ≈ −2.2241− 6.4133i, µ2 ≈ 2.9611, β2 ≈ −4.4482, T2 ≈ 63.3239.

Furthermore, it follows that µ2 > 0 and β2 < 0. Thus, the positive equilibrium
E0 ≈ (4.4437, 1.2904, 0.4941) is stable when τ < τ0 as is illustrated by the
computer simulations (see Figs.1-2). When τ passes through the critical value
τ0, the positive equilibrium E0 ≈ (4.4437, 1.2904, 0.4941) loses its stability
and a Hopf bifurcation occurs, i.e., a family of periodic solutions bifurcations
from the positive equilibrium E0 ≈ (4.4437, 1.2904, 0.4941). Since µ2 > 0 and
β2 < 0, the direction of the Hopf bifurcation is τ > τ0, and these bifurcating
periodic solutions from E0 ≈ (4.4437, 1.2904, 0.4941) at τ0 are stable, which
are depicted in Figs.3-4. From the bifurcation diagrams (Figs.5-7), it is shown
that the positive equilibrium E0 ≈ (4.4437, 1.2904, 0.4941) is stable when τ <
τ0 = 0.53 and unstable when τ > τ0 = 0.53.
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Figs.1-2 Behavior and phase portrait of system (41) with τ = 0.5 < τ0 ≈ 0.53.
The positive equilibrium E0 ≈ (4.4437, 1.2904, 0.4941) is asymptotically stable.
The initial value is (0.3,0.3,0.3).
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Figs.3-4 Behavior and phase portrait of system (41) with τ = 0.6 > τ0 ≈ 0.53.
Hopf bifurcation occurs from the positive equilibrium E0 ≈ (4.4437, 1.2904,
0.4941). The initial value is (0.3,0.3,0.3).
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Figs.5-7 Bifurcation diagrams of system (41) with initial value is (0.3,0.3,0.3).

5. Biological explanations and conclusions

5.1. Biological explanations

From the analysis in Section 2, we know that under the conditions (H1)-
(H3), (i) if (K1) or (K2) holds, then the positive equilibrium E0(x

∗
1, x

∗
2, y

∗) of
system (3) is asymptotically stable for all τ ≥ 0. This shows that, in this case,
the population density of prey species in two habits, the population density of
predator species will tend to stabilization, that is, the population density of
prey species in two habits, the population density of predator species will tend
to x∗1, x

∗
2, y

∗, respectively, and this fact is not influenced by the delay τ ≥ 0;
(ii) If (K3) or (K4) or (K5) holds, then the positive equilibrium E0(x

∗
1, x

∗
2, y

∗)
of system (3) is asymptotically stable when τ ∈ [0, τ0). This shows that, in this
case, the population density of prey species in two habits, the population den-
sity of predator species will tend to stabilization, that is, the population density
of prey species in two habits, the population density of predator species will
tend to x∗1, x

∗
2, y

∗, respectively, and this fact is not influenced by the delay
τ ∈ [0, τ0). When τ crosses through the critical value τ0, the positive equilib-
rium E0(x

∗
1, x

∗
2, y

∗) of system (3) loses stability and a Hopf bifurcation occurs.
This shows that the population density of prey species in two habits, the popu-
lation density of predator species may coexist and keep in an oscillatory mode
near the positive equilibrium E0(x

∗
1, x

∗
2, y

∗).



372 CHANGJIN XU, XIANHUA TANG, AND MAOXIN LIAO

5.2. Conclusions

In this paper, we have investigated local stability of the positive equilibrium
E0(x

∗
1, x

∗
2, y

∗) and local Hopf bifurcation in delayed predator-prey model of prey
migration and predator switching. We have showed that if the conditions (H1)-
(H3), (K1) or (H1)-(H3), (K2) hold, the positive equilibrium E0(x

∗
1, x

∗
2, y

∗) of
system (3) is asymptotically stable for all τ ≥ 0. Under the conditions (H1)-
(H3), if the condition (K3) or (K4) or (K5) holds, then the positive equilibrium
E0(x

∗
1, x

∗
2, y

∗) of system (3) is asymptotically stable for all τ ∈ [0, τ0). As the
delay τ increases, the positive equilibrium loses its stability and a sequence
of Hopf bifurcations occur at the positive equilibrium E0(x

∗
1, x

∗
2, y

∗), i.e., a
family of periodic orbits bifurcates from the positive equilibrium E0(x

∗
1, x

∗
2, y

∗).
At last, the direction of Hopf bifurcation and the stability of the bifurcating
periodic orbits are discussed by applying the normal form theory and the center
manifold theorem. A numerical example verifying our theoretical results is also
correct.
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