DOI QR코드

DOI QR Code

Complex Dynamic Behaviors of an Impulsively Controlled Predator-prey System with Watt-type Functional Response

  • Baek, Hunki (Department of Mathematics Education, Catholic University of Daegu)
  • Received : 2015.04.16
  • Accepted : 2015.09.25
  • Published : 2016.09.23

Abstract

In this paper, we consider a discrete predator-prey system with Watt-type functional response and impulsive controls. First, we find sufficient conditions for stability of a prey-free positive periodic solution of the system by using the Floquet theory and then prove the boundedness of the system. In addition, a condition for the permanence of the system is also obtained. Finally, we illustrate some numerical examples to substantiate our theoretical results, and display bifurcation diagrams and trajectories of some solutions of the system via numerical simulations, which show that impulsive controls can give rise to various kinds of dynamic behaviors.

Keywords

References

  1. J. F. M. Al-Omari, Stability and optimal harvesting in lotka-volterra competition model for two-species with stage structure, Kyungpook Math. J., 47(1)(2007), 31- 56.
  2. J. F. Andrews, A mathematical model for the continuous culture of macroorganisms untilizing inhibitory substrates, Biotechnol. Bioeng., 10(1968), 707-723. https://doi.org/10.1002/bit.260100602
  3. R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics:Ratio-dependence, J. Theor. Biol., 139(1989), 311-326. https://doi.org/10.1016/S0022-5193(89)80211-5
  4. H. Baek, Dynamics of an impulsive food chain system with a Lotka-Volterra functional response , J. of the Korean Society for Industrial and Applied Mathematics, 12(3)(2008), 139-151.
  5. H. Baek, A food chain system with Holling-type IV functional response and impulsive perturbations, Computers and Mathematics with Applications, 60(2010), 1152-1163. https://doi.org/10.1016/j.camwa.2010.05.039
  6. H. Baek, On the dynamical behavior of a two-prey one-predator system with two-type functional responses, Kyungpook Math. J., 53(4)(2013), 647-660. https://doi.org/10.5666/KMJ.2013.53.4.647
  7. H. Baek and Y. Do, Stability for a holling type iv food chain system with impulsive perturbations, Kyungpook Math. J., 48(3)(2008), 515-527.
  8. H. Baek and C. Jung, Extinction and permanence of a holling I type impulsive predator-prey model, Kyungpook Math. J., 49(4)(2009), 763-770. https://doi.org/10.5666/KMJ.2009.49.4.763
  9. H. Baek and H. H. Lee, Permanence of a three-species food chain system with impulsive perturbations, Kyungpook Math. J., 48(3)(2008), No. 3, 503-514. https://doi.org/10.5666/KMJ.2008.48.3.503
  10. D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations:Periodic Solutions and Applications, vol. 66, of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Science & Technical, Harlo, UK, 1993.
  11. D. D. Bainov and M. B. Dimitrova, Oscillatory and asymptotic properties of solutions of nonlinear impulsive differential equations of third order with retarded argument, Kyungpook Math. J., 39(1)(1999), 111-118.
  12. D. D. Bainov and M. B. Dimitrova, A. B. Dishliev, Nonoscillatory solutions of a class of impulsive differential equations of n -th order with retarded argument, Kyungpook Math. J., 39(1)(1999), 33-46.
  13. D. D. Bainov and I. M. Stamova, Global stability of the solutions of impulsive functional differential equations, Kyungpook Math. J., 39(2)(1999), 239-249.
  14. M. A. Basudan, On population growth model with density dependence, Kyungpook Math. J., 41(1)(2001), 127-136.
  15. J. R. Beddington, Mutual interference between parasites or predator and its effect on searching efficiency, J. Animal Ecol., 44(1975), 331-340. https://doi.org/10.2307/3866
  16. J. Cost, Comparing predator-prey models qualitatively and quantitatively with ecological time-seires dat, PhD-Thesis, Institute National Agronomique, Paris-Grignon, 1998.
  17. M. B. Dimitrova, Criteria for oscillation of impulsive differential equations of first order with deviating argument, Kyungpook Math. J., 40(1)(2000), 29-37.
  18. M. Fan and Y. Kuang, Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response, J. of Math. Anal. and Appl., 295(2004), 15-39. https://doi.org/10.1016/j.jmaa.2004.02.038
  19. S. Gakkhar and R. K. Naji, Chaos in seasonally perturbed ratio-dependent preypredator system, Chaos, Solitons and Fractals, 15(2003), 107-118. https://doi.org/10.1016/S0960-0779(02)00114-5
  20. C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulations, Mem. Ent. Sec. Can., 45(1965), 1-60.
  21. S. -B. Hsu and T. -W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55(3)(1995), 763-783. https://doi.org/10.1137/S0036139993253201
  22. V Lakshmikantham, D. Bainov, P.Simeonov, Theory of Impulsive Differential Equations, World Scientific Publisher, Singapore, 1989.
  23. B. Liu, Y. Zhang and L. Chen, Dynamic complexities in a Lotka-Volterra predatorprey model concerning impulsive control strategy, Int. J. of Bifur. and Chaos, 15(2)(2005), 517-531. https://doi.org/10.1142/S0218127405012338
  24. Y. Liu and Z. Li, Second order impulsive neutral functional differential inclusions, Kyungpook Math. J., 48(1)(2008), 1-14. https://doi.org/10.5666/KMJ.2008.48.1.001
  25. S. Ruan and D. Xiao, Golbal analysis in a predator-prey sytem with non-monotonic functional response, SIAM J. Appl. Math., 61(4)(2001), 1445-1472. https://doi.org/10.1137/S0036139999361896
  26. E, Saez and E. Gonzalez-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math., 59(5)(1999), 1867-1878. https://doi.org/10.1137/S0036139997318457
  27. G. T.Skalski and J. F.Gilliam,Funtional responses with predator interference: viable alternatives to the Holling type II mode, Ecology, 82(2001), 3083-3092. https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
  28. W. Sokol and J. A. Howell , Kineties of phenol oxidation by ashed cell, Biotechnol. Bioeng., 23(1980), 2039-2049.
  29. G. Tr. Stamov, Almost periodic processes in ecological systems with impulsive perturbations, Kyungpook Math. J., 49(2)(2009), 299-312. https://doi.org/10.5666/KMJ.2009.49.2.299
  30. G. i Tr. Stamov, Second method of lyapunov for existence of almost periodic solutions for impulsive integro-di erential equations, Kyungpook Math. J., 43(2)(2003), 221-231.
  31. W. Wang, H. Wang and Z. Li, The dynamic complexity of a three-species Beddingtontype food chain with impulsive control strategy, Chaos, Solitons and Fractals, 32(2007), 1772-1785. https://doi.org/10.1016/j.chaos.2005.12.025
  32. X. Wang, W. Wang and X. Lin, Chaotic behavior of a Watt-type predator-prey system with impulsive control strategy, Chaos, Solitons and Fractals, 37(3)(2008), 706-718. https://doi.org/10.1016/j.chaos.2006.09.050
  33. X. Wang and Z. Li, Global attractivity and oscillations in a nonlinear impulsive parabolic equation with delay, Kyungpook Math. J., 48(4)(2008), 593-611. https://doi.org/10.5666/KMJ.2008.48.4.593
  34. K. E. F Watt, A mathematical model for the effect of densities of attacked and attacking specises on the number atacked, Can. Entomol., 91(1959),129C144.
  35. R. Xu, M. A. J. Chaplain and F. A. Davidson, Periodic solutions of a delayed population model with one predator and two preys, Kyungpook Math. J., 44(4)(2004), 519-535.
  36. F. Zhang, Anti-periodic boundary value problem for impulsive differential equations with delay, Kyungpook Math. J., 48(4)(2008), 553-558.
  37. S. Zhang, L. Dong and L. Chen, The study of predator-prey system with defensive ability of prey and impulsive perturbations on the predator, Chaos, Solitons and Fractals, 23(2005), 631-643. https://doi.org/10.1016/j.chaos.2004.05.044
  38. S. Zhang, D. Tan and L. Chen, Chaos in periodically forced Holling type IV predatorprey system with impulsive perturbations, Chaos, Solitons and Fractals, 27(2006), 980-990. https://doi.org/10.1016/j.chaos.2005.04.065