References
- J. F. M. Al-Omari, Stability and optimal harvesting in lotka-volterra competition model for two-species with stage structure, Kyungpook Math. J., 47(1)(2007), 31- 56.
- J. F. Andrews, A mathematical model for the continuous culture of macroorganisms untilizing inhibitory substrates, Biotechnol. Bioeng., 10(1968), 707-723. https://doi.org/10.1002/bit.260100602
- R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics:Ratio-dependence, J. Theor. Biol., 139(1989), 311-326. https://doi.org/10.1016/S0022-5193(89)80211-5
- H. Baek, Dynamics of an impulsive food chain system with a Lotka-Volterra functional response , J. of the Korean Society for Industrial and Applied Mathematics, 12(3)(2008), 139-151.
- H. Baek, A food chain system with Holling-type IV functional response and impulsive perturbations, Computers and Mathematics with Applications, 60(2010), 1152-1163. https://doi.org/10.1016/j.camwa.2010.05.039
- H. Baek, On the dynamical behavior of a two-prey one-predator system with two-type functional responses, Kyungpook Math. J., 53(4)(2013), 647-660. https://doi.org/10.5666/KMJ.2013.53.4.647
- H. Baek and Y. Do, Stability for a holling type iv food chain system with impulsive perturbations, Kyungpook Math. J., 48(3)(2008), 515-527.
- H. Baek and C. Jung, Extinction and permanence of a holling I type impulsive predator-prey model, Kyungpook Math. J., 49(4)(2009), 763-770. https://doi.org/10.5666/KMJ.2009.49.4.763
- H. Baek and H. H. Lee, Permanence of a three-species food chain system with impulsive perturbations, Kyungpook Math. J., 48(3)(2008), No. 3, 503-514. https://doi.org/10.5666/KMJ.2008.48.3.503
- D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations:Periodic Solutions and Applications, vol. 66, of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Science & Technical, Harlo, UK, 1993.
- D. D. Bainov and M. B. Dimitrova, Oscillatory and asymptotic properties of solutions of nonlinear impulsive differential equations of third order with retarded argument, Kyungpook Math. J., 39(1)(1999), 111-118.
- D. D. Bainov and M. B. Dimitrova, A. B. Dishliev, Nonoscillatory solutions of a class of impulsive differential equations of n -th order with retarded argument, Kyungpook Math. J., 39(1)(1999), 33-46.
- D. D. Bainov and I. M. Stamova, Global stability of the solutions of impulsive functional differential equations, Kyungpook Math. J., 39(2)(1999), 239-249.
- M. A. Basudan, On population growth model with density dependence, Kyungpook Math. J., 41(1)(2001), 127-136.
- J. R. Beddington, Mutual interference between parasites or predator and its effect on searching efficiency, J. Animal Ecol., 44(1975), 331-340. https://doi.org/10.2307/3866
- J. Cost, Comparing predator-prey models qualitatively and quantitatively with ecological time-seires dat, PhD-Thesis, Institute National Agronomique, Paris-Grignon, 1998.
- M. B. Dimitrova, Criteria for oscillation of impulsive differential equations of first order with deviating argument, Kyungpook Math. J., 40(1)(2000), 29-37.
- M. Fan and Y. Kuang, Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response, J. of Math. Anal. and Appl., 295(2004), 15-39. https://doi.org/10.1016/j.jmaa.2004.02.038
- S. Gakkhar and R. K. Naji, Chaos in seasonally perturbed ratio-dependent preypredator system, Chaos, Solitons and Fractals, 15(2003), 107-118. https://doi.org/10.1016/S0960-0779(02)00114-5
- C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulations, Mem. Ent. Sec. Can., 45(1965), 1-60.
- S. -B. Hsu and T. -W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55(3)(1995), 763-783. https://doi.org/10.1137/S0036139993253201
- V Lakshmikantham, D. Bainov, P.Simeonov, Theory of Impulsive Differential Equations, World Scientific Publisher, Singapore, 1989.
- B. Liu, Y. Zhang and L. Chen, Dynamic complexities in a Lotka-Volterra predatorprey model concerning impulsive control strategy, Int. J. of Bifur. and Chaos, 15(2)(2005), 517-531. https://doi.org/10.1142/S0218127405012338
- Y. Liu and Z. Li, Second order impulsive neutral functional differential inclusions, Kyungpook Math. J., 48(1)(2008), 1-14. https://doi.org/10.5666/KMJ.2008.48.1.001
- S. Ruan and D. Xiao, Golbal analysis in a predator-prey sytem with non-monotonic functional response, SIAM J. Appl. Math., 61(4)(2001), 1445-1472. https://doi.org/10.1137/S0036139999361896
- E, Saez and E. Gonzalez-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math., 59(5)(1999), 1867-1878. https://doi.org/10.1137/S0036139997318457
- G. T.Skalski and J. F.Gilliam,Funtional responses with predator interference: viable alternatives to the Holling type II mode, Ecology, 82(2001), 3083-3092. https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
- W. Sokol and J. A. Howell , Kineties of phenol oxidation by ashed cell, Biotechnol. Bioeng., 23(1980), 2039-2049.
- G. Tr. Stamov, Almost periodic processes in ecological systems with impulsive perturbations, Kyungpook Math. J., 49(2)(2009), 299-312. https://doi.org/10.5666/KMJ.2009.49.2.299
- G. i Tr. Stamov, Second method of lyapunov for existence of almost periodic solutions for impulsive integro-di erential equations, Kyungpook Math. J., 43(2)(2003), 221-231.
- W. Wang, H. Wang and Z. Li, The dynamic complexity of a three-species Beddingtontype food chain with impulsive control strategy, Chaos, Solitons and Fractals, 32(2007), 1772-1785. https://doi.org/10.1016/j.chaos.2005.12.025
- X. Wang, W. Wang and X. Lin, Chaotic behavior of a Watt-type predator-prey system with impulsive control strategy, Chaos, Solitons and Fractals, 37(3)(2008), 706-718. https://doi.org/10.1016/j.chaos.2006.09.050
- X. Wang and Z. Li, Global attractivity and oscillations in a nonlinear impulsive parabolic equation with delay, Kyungpook Math. J., 48(4)(2008), 593-611. https://doi.org/10.5666/KMJ.2008.48.4.593
- K. E. F Watt, A mathematical model for the effect of densities of attacked and attacking specises on the number atacked, Can. Entomol., 91(1959),129C144.
- R. Xu, M. A. J. Chaplain and F. A. Davidson, Periodic solutions of a delayed population model with one predator and two preys, Kyungpook Math. J., 44(4)(2004), 519-535.
- F. Zhang, Anti-periodic boundary value problem for impulsive differential equations with delay, Kyungpook Math. J., 48(4)(2008), 553-558.
- S. Zhang, L. Dong and L. Chen, The study of predator-prey system with defensive ability of prey and impulsive perturbations on the predator, Chaos, Solitons and Fractals, 23(2005), 631-643. https://doi.org/10.1016/j.chaos.2004.05.044
- S. Zhang, D. Tan and L. Chen, Chaos in periodically forced Holling type IV predatorprey system with impulsive perturbations, Chaos, Solitons and Fractals, 27(2006), 980-990. https://doi.org/10.1016/j.chaos.2005.04.065