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PERIODIC SOLUTIONS OF A DISCRETE TIME
NON-AUTONOMOUS RATIO-DEPENDENT
PREDATOR-PREY SYSTEM WITH CONTROL

ZHIJUN ZENG

ABSTRACT. With the help of the coincidence degree and the related con-
tinuation theorem, we explore the existence of at least two periodic so-
lutions of a discrete time non-autonomous ratio-dependent predator-prey
system with control. Some easily verifiable sufficient criteria are estab-
lished for the existence of at least two positive periodic solutions.

1. Introduction

In mathematical ecology literatures, there are two different types of predator-
prey models: the classical prey-dependent ones and the ratio-dependent ones.
The classical prey-dependent predator-prey system often takes the general form

(11) J)'(t) = .’IZf(.T) - Cyp(l’),

y'(t) = (p(z) - d)y,
where z, y stand for prey and predator density, respectively, p(x) is the so-called
predator functional response, and its various concrete forms have received great
attention and have been well studied, for example, the traditional model with
Holling type II functional response

cxy

z'(t) =z (r — kx) — ,

(1.2) ) = —dy + fxym-i-x
v =T e

Unfortunately, the prey-dependent functional response fails to model the inter-
ference among predators. To overcome the shortcoming, Arditi and Ginzburg
[1] proposed the following ratio-dependent predator-prey model

N B __cxy
2'(t) =z (a — br) p——

(1.3) " — Fay
y()——y+my+x,
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which incorporates mutual interference by predator. For detailed justification
of (1.3) and its merits versus system (1.2), we can refer to [1]. In addition,
system (1.3) and its nonautonomous model have been studied by many authors
and seen great progress, see, for example, {2, 3, 8, 13].

In real life, biological controls have been successfully and frequently imple-
mented by nature and human. Therefore, control variables are introduced to
the mathematical ecological models. Generally, the model with control can be
depicted by the following

(1.4) T =zf(z,y) +u, y=yg(x,y)+uz,

where u1, us stand for control variables. Particularly, a non-autonomous ratio-
dependent predator-prey model with control based on system (1.3) is described
as follows

x'(t) = zfa(t) — b(t)z —C—(t)x—y——ut

ws) (t) = zla(t) — b( )f(]t)x;n(t)y a0
/

() =—dty+ oe
where a,c,d, f, m,u denote the prey intrinsic rate, capture rate, death rate of
predator, conversion rate, half saturation parameter and exploited term (e.g.
harvest), respectively. It is noted that the control is only imposed on the prey
and the continuous system (1.5) has been well studied by Tian and Zeng [12].
However, many authors have argued that the discrete time models governed
by difference equations are more appropriate than the continuous ones when
the populations have nonoverlapping generations, see [4, 7, 10]. Therefore,
the major objective of this paper is to propose a discrete analogue of nonau-
tonomous system (1.5) and investigate the existence of periodic solutions due
to the various seasonal effects present in real life situation.

2. Preliminaries

Let us begin by introducing some terminology and results.

Let Z,Z*, R, Rt and R? denote the sets of all integers, nonnegative integers,
real numbers, nonnegative real numbers, and two-dimensional Euclidean vector
space, respectively. In the sequel, we will use the notations

B 1 w—1 L ) o

where {g(k)} is an w-periodic sequence of real numbers defined for k € Z.
The major objective of this paper is to study the existence of positive pe-

riodic solutions of discrete-time form of system (1.5). To this end, we first

discretize system (1.5). Using homogeneous techniques as can be found in [2],
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we obtain the following model
(2.1)

z1(k+ 1) = z1(k) exp { a(k) — b(k)z1(

B c(k)za(k) _u(k)
k) m(k)xa (k) + z1(k) Jil(k)}

) F(k)ar (k) _
zo(k + 1) = zo(k)exp S —d(k) + (k)22 (k) + 21 (F) } k=0,1,...,

where z;(k),i = 1,2 denotes the density of prey and predator at time k, re-
spectively.

In system (2.1), we always assume that a,d: Z — R and b,e,m, f,u:Z —
R are w periodic and @ > 0,d > 0, where w, a fixed positive integer, denotes
the prescribed common period of the parameters in system (2.1). Moreover,
for biological reasons, we only consider solutions (z;(t),z2(¢)) with z;(0) >
0,z2(0) > 0.

For the reader’s convenience, we now recall Mawhin’s coincidence degree
which our study is based upon.

Let X,Y be normed vector spaces, L : Dom L C X — Y a linear mapping,
N : X — Y is a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dimKer L = codimIm L < +o0 and Im L is closed in
Y. If L is a Fredholm mapping of index zero there exist continuous projectors
P:X - Xand @ :Y — Y such that InP = KerL,ImL = KerQ =
Im(I — Q). It follows that L| Dom L NKer P : (I — P)X — Im L is invertible.
We denote the inverse of that map by Kp. If  be an open bounded subset
of X, the mapping N will be called L-compact on Q if QN(f) is bounded and
Kp(I — Q)N : Q — X is compact. Since Im Q is isomorphic to Ker L, there
exists an isomorphism J : Im Q — Ker L.

Theorem A. (Continuation Theorem [6]) Let L be a Fredholm mapping of
indez zero and let N be L-compact on Q. Suppose
(¢) For each X € (0,1), every solution x of Lz = ANz is such that x & 0%,
(it) QNz # 0 for each z € 00 NKer L and

deg{JQN,Q2NKerL,0} #0.
Then the equation Lz = Nz has at least one solution lying in Dom L N Q.
The following lemma given in [2].

Lemma 2.1. Let g:Z — R be w-periodic, i.e., g(k +w) = g(k), then for any
fized k1, ke € I, and any k € Z, we have

o(k) < glkn) + z_: l9(s +1) — g(s)],

o(k) > glks) - g l9(s + 1) — g(s)].
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Lemma 2.2. If f > d and (a—c/m)~ > 2vVbMuM | then the following algebraic
equations

o 14 c(k) exp{v2} a
(2.2) Trewln Z"_ Z “ m(k) exp{vs} + exp{v:1} expl{ui}
' 3 l < k)exp{vi}
d+ w Z (k) exp{’UQ} + exp{vl}

k=0
has two solutions.

Proof. Consider the function

w—1
;1 (k)
=—d+=y — >0
f(z) d+w;m(k)z+1’z'0
It is easily seen that f(z) is decreasing with z and
f)=f—-d>0, lim  f(z) = -d<0,

then it follows that there exists a unique z* such that f(z*) = 0.
Substituting z* = exp{va — v} into the first equation in (2.2), we have

o 142 c(k)z o _
(2.3) a —bexp{ui} — w kgo m(k)z* +1  exp{oi} o

Obviously, it is a quadratic equation with respect to exp{v;}, then it has two
solutions, denote by v; and v? (v < v#). Moreover, one can easily see that

- 7N
et - (5] -
exp{vi} — ( —
Solving the inequality produces

—e/m) — /la - e/m)P” - 45a

U
exp{u }

a
exp{vi} <

a— (c/m)+ \/[FL — (¢/m)]? — 4bu
exp{vi} > = ,
2b
which implies (2.2) has two solutions and this completes the proof. O

3. Main results

In this section, we devote ourselves to establishing easily verifiable sufficient
criteria for the existence of at least two positive periodic solutions of the system
(2.1) by employing the coincidence degree and the related continuation theorem
introduced in previous section.

Define I = {y = {y(k)} : y(k) € R% k € Z} and |h| = max{h,hs}, for
any h = (h1,h2)T € R2. Let I* C I, stand for the subspace of all w periodic
sequences with the supremum norm |y|| = maxkes, |y(k)|, for any y € [v.
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Thus, from [11], we know that [“ is a normed space with this norm and every
Cauchy sequence is convergent in {*, which imply that [ is a finite-dimensional
Banach space.

Let

s = {y={u(B)} € 'S y(k) =0},

={y={y(k)} € :y(k) = h € R* k € Z}.
Then it follows that I and [¥ are both closed linear subspace of [ and {“ =
g @ly,dimly =2.

Lemma 3.1. [11] Let T : X — Y be a linear operator, where X and Y are
normed spaces, and X has finite dimension, then T is bounded, and hence
continuous.

We now state and prove our main results.

Theorem 3.2. If f > d and (a —c/m) > 2VbMuM | then system (2.1) has at
least two positive w-periodic solutions.

Proof. From the system (2.1), we can see that every solution is positive with
initial values z1(0) > 0,z2(0) > 0. Let z;(k) = exp{yi(k)},7 = 1,2. Then
system (2.1) reduces to

(3.1)
y1(k +1) —y1(k) = a(k) — b(k) exp{y1(k)} — m(k) ex;({ky);z)l{c];)iyj(:g{yl(k)}
_ u(k)
exp{y1(k)}’
ya(k+1) — ya(k) = —d(k) + f(k) exp{y, (k)}

m(k) exp{y2(k)} + exp{y1(k)}

By this media, it is trivial to show that if system (3.1) has a w-periodic solution
y* = (i,v3)7, then 2* = (&7,23)7 = (exp{y}}, exp{y3})” is a positive w-
periodic solution of system (2.1). To this end, it suffices to prove that system
(3.1) has at least two w-periodic solutions.

For A € (0,1), we consider the following system

(3.2)
yi1(k+ 1) — y1(k)

o(k) exply2 (k) u(k)
=2 [ B exp i)} = oy o (ya®)} + exp ()] ool ()]
yo(k +1) —y2(k)

N F(8) exp{un (k)
=2 { UE) + R exp{ya(R)} + explw: (5]

Suppose that y = {y(k)} = {(y1(k),y2(k))T} is an arbitrary w-periodic
solution of system (3.2) for a certain A € (0,1). Summing on both sides of
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(3.2) from 0 to w — 1 with respect to k, leads to

(3.3)
w—1
o — ox c(k) exp{y2(k)} u(k)
2 [b(k) P+ L expfya ()} + exply (B)) exp{yl(k)}] |
and
_ F (k) exp{y: (k)}

G4 =2 o) o)
From (3.2) — (3.4), it follows that

wi yl k) + 1 k))l

k=0

w—1

c(k) exp{ya(k)}
(65 = ['“(’“)'”(’“’e"p{“(’“)“ () exply ()} + explys (0]
u(k)
+exp{y1(k>}]
= (A+d)w,
and
S etk + 1) — ya(k)
0 - (k) expfy (k)}
. £ (k) exp{ys (k (DD
> O e o)+ empmry) O D

Choose &;,7; € 1,1 = 1,2, such that
3.7) yi(&:) = min{ys(k)}, wa(m) = max{y;(k)}, i =1,2

By (3.3) and (3.7), we obtain

aw > i b(k) exp{y1(k)} > Z b(k) exp{y1(&1)} = exp{y1 (&)} bw,
k=0

which reduces to y1(£1) < In{$}. This, together with (3.5) and Lemma 2.1, we
get

(38 1) <paE)+ Y Wils+ 1)~ ()] <Inf3)+ (A+aw=pr

5=0
Again from (3.3) and (3.7), it follows that
(

w=—1

_ u(k) S ) B
> ) 2 ey R
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which implies
U
yi(m) > In{=}.
Therefore, by Lemma 2.1 and (3.5), we obtain

(3.9 (k) > yilm) Z lyi(s + 1) — y1(s)| > In{%} — (A + d)w = pa.
From (3.4), (3.7) and (3.8), we can derive that

w=l f(k)exp{yi(k)}
k=0 (k) exp{yz(k }

k) exp{y:(k)}
k) exp{y2(62)}

mi (%) exp{(A +awlw,

dw <

M

then
(3.10) y2(&2) <ln{b‘_;(f)} + (A +a)w.
From (3.6), (3.10) and using Lemma 2.1, one can easily obtain
y2(k) )+ Z ly2(s +1) — y2(s)|
(3.11)
{ } +(A+a+ D+ dw:= ps.

Moreover, from (3. 4) and (3.9), we get

f(k) exp{y (k)}

k=0 MM exp{ya(n2)} + exp{yL(k)}
w1 f(k)(u/a) exp{—(A + a)w}
o mM exp{ya(n2)} + (a/a) exp{—(A + a)w}’

y2(2) > ln{@} —(A+a)w.

mMad

dw >

>

which leads to

Consequently,

y2(k) > ya(me) Z [y2(s + 1) — ya(s)]
(3.12)

d
1t follows from (3.11) and (3.12) that

(3.13) ly2(k)! < lpsl +|pal + p := Bu,

where p is a positive constant. Clearly, p1, p2, B1,0_, 6, are independent of A.

> 1n{(f d)} (A+d+ D+ dyw = pa.
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From (3.7) and the first equality of (3.1), we also have

B c(m) exp{ya(m)} _u(m)
m{m ) exp{y2(m)} +exp{yi(m)} exp{yi(m)}

a{ni)—b(m) exp{y1(m)}

which reduces to

b(m) exp{2y1(m)} — (aml) - —mi(’%) exp{ya(m)} +ulm) > 0.

Solving the inequality, we have

—e/m)E — Sia = e ETE =
exp{yl(m)} < (a /m) \/[(2ch/ )L] T =0,

or

a—c/m)t + /[(a — c¢/m)L)? — 4bMyM
exp{ya(m)} > 2™ \/[(sz ] = 0y
Similarly, we can obtain exp{y1(&1)} < 6— or exp{y1(£1)} > 4. Then, by (3.8)

and (3.9), we get

(3.14) p2 <yi(k) <Ind_, or Indy <y1(k) < p1, k€ L,.

By Lemma 2.2, there exists two solutions of (3.1), denoted by (yi,y3)7,
(v?,92)T (y} < y?). Then by (3.14), we have

(3.15) pa <yi <Iné_, or Inéy <y <py, k€ l,.
Now let us take X =Y =1¥,(Ly)(k) = y(k + 1) — y(k), and
c(k) exp{ya(k)}

a{k) — b(k) exp{y1(k)} — m{k) exp{y2(k)} + exp{y1(k)}

_ u(k) f(k) exp{yi(k)}
exp{y1(k)} m(k) exp{y2(k)} + exp{y1(k)}

for any y € X and k € Z. Then by Lemma 3.1, L is a bounded linear operator

and KerL = {¥,Im L = {§. Let Coker = Y/Im L be the quotient space of YV’

under the equivalence relation z ~ 2’ <= z— 2’ € Im L. Thus, Coker L = {z+

ImL: 2z €Y} and dim Coker L = codimIm L. So dimKer L = 2 = codimIm L.

Therefore, L is a Fredholm operator of index zero by previous definition.
Define projectors P and Q by

(Ny)(k) =

— d(k) +

w—1 w—1
1 1
Py=— s§=0 y(s), y€X, Qz= " ;:0 2(s), z €Y.

Obviously, In P = Ker L and Im L = Ker @ = Im(J — Q). Furthermore, the
generalized inverse (to L) is as follows

w—1 w=1
Kp:ImL —DomLNKerP, Kp(z)= Z z(s) — % Z(w — 5)z(s).

s§=0 §=0
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Take By = |y3| + |y2|, and define

D ={y=(y1,92)T € X : p2 <y1(k) <Iné_,||y2|| < B1 + Bz},
D ={y=(1,y2)" € X :Iné; <yi(k) < p, lly2]l < B1 + Bz}

Both Q; and Q, are open subsets of X. Since 6_ < 6, we have Q; Ny = ¢.
From (3.15), we see that (yi,y3)7 € Qi, (¥%,43)T € Qa.

Note that both QN and Kp(I — Q)N are continuous. Since X is a finite
dimensional Banach space and both QN and Kp(I — Q)N map bounded con-
tinuous functions to bounded continuous functions, then by the Arzela-Ascoli
theorem, we see that QN{Q;) and Kp(I — Q)N(£;), i = 1,2, are relatively
compact for any open bounded set {); € X. Therefore, N is L-compact on
Qui=1,2.

Since we are concerned with the periodic solutions, ¥ = (y1,%2)? confined
in Dom L, system (3.2) can be regarded as the following operator equation
Ly = ANy, which is system (3.1) when A = 1. According to the previous
estimation of periodic solution of (3.2), we have proven the requirement () of
Theorem A.

When y € 8Q; NkerL,s = 1,2,y = {(y1,42)7 } and (y1,¥2)7 is a constant
vector in R?. From (2.3) and (3.14) and Lemma 2.1, it follows that

w—1

G — Bex 1 c{k) exp{y2} @
a — bexp{yi} w kZ=o m(k)exp{y2} + exp{y1} exp{y1}
RNy = £0.
PR f(k) exp{y1}
L e kZ:O m(k) exp{y2} + exp{y1}

Moreover, direct calculation shows that
deg(JQN,Q;NKerL,0) #0, i =1,2,

where deg(-) is the Brouwer degree and the J is the identity mapping since
Im@ =KerL.

By now, we have proved that each §2;(i = 1, 2) satisfies all the requirements
of Theorem A. Hence, system (3.1) has at least one w-periodic solution in each
of Q7 and Q5. The proof is completed. O

References

[1] R. Arditi, L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, J.
Theoretical Biology 139 (1989), 311-326.

[2] M. Fan and K. Wang, Periodic solutions of a discrete time monautonomous ratio-
dependent predator-prey system, Math. Comput. Model 35 (2002), 951-961.

[3] M. Fan, Q. Wang, and X. F. Zou, Dynamics of a nonautonomous ratio-dependent
predator-prey system, Pro. Roy. Soc. Edinburgh Sect. A (2003), 97-118.

[4] H. 1. Freedman, Deterministic mathematical models in population ecology, Marcel
Dekker, New York, 1980.

[5] H. 1. Freedman and R. M. Mathsen, Persistence in predator prey systems with ratio-
dependent predator-influence, Bull. Math. Biol. 55 (1993), 817-827.



474 ZHIJUN ZENG

[6] R. E. Gaines and J. L. Mawhin, Coincidence degree and nonlinear differential equations,
Springer-Verlag, Berlin, 1977.
[7] B. S. Goh, Management and analysis of biological population, Elsevier Scientific, The
Netherlands, 1980.
[8] S. B. Hsu, T. W. Huang, and Y. Kuang, Global analysis of the Michaelis-Menten type
ratio-dependent predator-prey system, J. Math. Biol. 42 (2003), 489-506.
[9] , A ratio-dependent food chain model and ils applications to biological control,
J. Math. Biol. 181 (2003), 55-83.
[10] J. D. Murry, Mathematical biology, Springer-Verlag, New York, 1989.
{11] B. Daya Reddy, Introductory functional analysis: with applications to boundary vaelue
problems and finite elements, Springer-Verlag, 1997.
[12] D. S. Tian and X. W. Zeng, Ezistence of at least two periodic solutions of a ratio-
dependent predator-prey model with exploited term, Acta Math. Appl. Sin, English series
21 (2005}, no. 3, 489-494.
[13] Qian Wang, Meng Fan, and Ke Wang, Dynamics of a class of nonautonomous semi-
ratio-dependent predator-prey systems with functional responses, J. Math. Anal. Appl.
278 (2003), no. 2, 443-471.

ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCES
CAS, BEUING 100080, P. R. CHINA
E-mail address: zthzzj@amss.ac.cn



