• Title/Summary/Keyword: p-paranormal

Search Result 14, Processing Time 0.028 seconds

ON A CLASS OF OPERATORS RELATED TO PARANORMAL OPERATORS

  • Lee, Mi-Young;Lee, Sang-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.25-34
    • /
    • 2007
  • An operator $T{\in}L(H)$ is said to be p-paranormal if $$\parallel{\mid}T\mid^pU{\mid}T\mid^px{\parallel}x\parallel\geq\parallel{\mid}T\mid^px\parallel^2$$ for all $x{\in}H$ and p > 0, where $T=U{\mid}T\mid$ is the polar decomposition of T. It is easy that every 1-paranormal operator is paranormal, and every p-paranormal operator is paranormal for 0 < p < 1. In this note, we discuss some properties for p-paranormal operators.

ON THE CLASS OF κTH ROOTS OF PARANORMAL OPERATORS

  • YANG, YOUNG OH
    • Honam Mathematical Journal
    • /
    • v.26 no.2
    • /
    • pp.137-145
    • /
    • 2004
  • we shall study some properties of a new class ($\sqrt[\kappa]{P}$) (defined below). Also we show that T may not be normaloid when $T{\in}(\sqrt[\kappa]{P})$, and that the class ($\sqrt{H}$) may not have the translation-invariant propety.

  • PDF

GENERALIZED WEYL'S THEOREM FOR ALGEBRAICALLY $k$-QUASI-PARANORMAL OPERATORS

  • Senthilkumar, D.;Naik, P. Maheswari;Sivakumar, N.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.655-668
    • /
    • 2012
  • An operator $T\;{\varepsilon}\;B(\mathcal{H})$ is said to be $k$-quasi-paranormal operator if $||T^{k+1}x||^2\;{\leq}\;||T^{k+2}x||\;||T^kx||$ for every $x\;{\epsilon}\;\mathcal{H}$, $k$ is a natural number. This class of operators contains the class of paranormal operators and the class of quasi - class A operators. In this paper, using the operator matrix representation of $k$-quasi-paranormal operators which is related to the paranormal operators, we show that every algebraically $k$-quasi-paranormal operator has Bishop's property ($\beta$), which is an extension of the result proved for paranormal operators in [32]. Also we prove that (i) generalized Weyl's theorem holds for $f(T)$ for every $f\;{\epsilon}\;H({\sigma}(T))$; (ii) generalized a - Browder's theorem holds for $f(S)$ for every $S\;{\prec}\;T$ and $f\;{\epsilon}\;H({\sigma}(S))$; (iii) the spectral mapping theorem holds for the B - Weyl spectrum of T.

ON n-*-PARANORMAL OPERATORS

  • Rashid, Mohammad H.M.
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.549-565
    • /
    • 2016
  • A Hilbert space operator $T{\in}{\mathfrak{B}}(\mathfrak{H})$ is said to be n-*-paranormal, $T{\in}C(n)$ for short, if ${\parallel}T^*x{\parallel}^n{\leq}{\parallel}T^nx{\parallel}\;{\parallel}x{\parallel}^{n-1}$ for all $x{\in}{\mathfrak{H}}$. We proved some properties of class C(n) and we proved an asymmetric Putnam-Fuglede theorem for n-*-paranormal. Also, we study some invariants of Weyl type theorems. Moreover, we will prove that a class n-* paranormal operator is finite and it remains invariant under compact perturbation and some orthogonality results will be given.

SOME WEAK HYPONORMAL CLASSES OF WEIGHTED COMPOSITION OPERATORS

  • Jabbarzadeh, Mohammad R.;Azimi, Mohammad R.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.793-803
    • /
    • 2010
  • In this note, we discuss measure theoretic characterizations for weighted composition operators in some operator classes on $L^2(\cal{F})$ such as, p-quasihyponormal, p-paranormal, p-hyponormal and weakly hyponormal. Some examples are then presented to illustrate that weighted composition operators lie between these classes.

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF

PARANORMAL CONTRACTIONS AND INVARIANT SUBSPACES

  • Duggal, B.P.;Kubrusly, C.S.;Levan, N.
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.933-942
    • /
    • 2003
  • It is shown that if a paranormal contraction T has no nontrivial invariant subspace, then it is a proper contraction. Moreover, the nonnegative operator Q = T/sup 2*/T/sup 2/ - 2T/sup */T + I also is a proper contraction. If a quasihyponormal contraction has no nontrivial invariant subspace then, in addition, its defect operator D is a proper contraction and its itself-commutator is a trace-class strict contraction. Furthermore, if one of Q or D is compact, then so is the other, and Q and D are strict ontraction.

CONTRACTIONS OF CLASS Q AND INVARIANT SUBSPACES

  • DUGGAL, B.P.;KUBRUSLY, C.S.;LEVAN, N.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.169-177
    • /
    • 2005
  • A Hilbert Space operator T is of class Q if $T^2{\ast}T^2-2T{\ast}T + I$ is nonnegative. Every paranormal operator is of class Q, but class-Q operators are not necessarily normaloid. It is shown that if a class-Q contraction T has no nontrivial invariant subspace, then it is a proper contraction. Moreover, the nonnegative operator Q = $T^2{\ast}T^2-2T{\ast}T + I$ also is a proper contraction.

A STRUCTURE THEOREM FOR $p$-HYPONORMAL CONTRACTIONS

  • Lee, Mi-Young;Lee, Sang-Hun
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 1998
  • In this paper we prove a structure theorem for p-hyponomal contractions and also give an example of a p-hyponormal operator which is not *-paranormal.

  • PDF