DOI QR코드

DOI QR Code

GENERALIZED WEYL'S THEOREM FOR ALGEBRAICALLY $k$-QUASI-PARANORMAL OPERATORS

  • Senthilkumar, D. (Post Graduate and Research Department of Mathematics, Government Arts College (Autonomous)) ;
  • Naik, P. Maheswari (Department of Mathematics Hindusthan College of Arts and Science) ;
  • Sivakumar, N. (Department of Mathematics Hindusthan College of Arts and Science)
  • Published : 2012.11.15

Abstract

An operator $T\;{\varepsilon}\;B(\mathcal{H})$ is said to be $k$-quasi-paranormal operator if $||T^{k+1}x||^2\;{\leq}\;||T^{k+2}x||\;||T^kx||$ for every $x\;{\epsilon}\;\mathcal{H}$, $k$ is a natural number. This class of operators contains the class of paranormal operators and the class of quasi - class A operators. In this paper, using the operator matrix representation of $k$-quasi-paranormal operators which is related to the paranormal operators, we show that every algebraically $k$-quasi-paranormal operator has Bishop's property ($\beta$), which is an extension of the result proved for paranormal operators in [32]. Also we prove that (i) generalized Weyl's theorem holds for $f(T)$ for every $f\;{\epsilon}\;H({\sigma}(T))$; (ii) generalized a - Browder's theorem holds for $f(S)$ for every $S\;{\prec}\;T$ and $f\;{\epsilon}\;H({\sigma}(S))$; (iii) the spectral mapping theorem holds for the B - Weyl spectrum of T.

Keywords

References

  1. P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer Academic Publishers (2004), Dordrecht, Boston, London.
  2. P. Aiena and T. L. Miller, On generalized a - Browder's theorem, Studia. Math., 180 (2007), 285-300. https://doi.org/10.4064/sm180-3-7
  3. A. Aluthge,On p - hyponormal operators for 0 < p < 1, Integral equations operator theory., 13 (1990) no. 3, 307-315. https://doi.org/10.1007/BF01199886
  4. T. Ando, Operators with a norm conditions, Acta. Sci. Math (Szeged)., 33 (1972), 169-178.
  5. S.C. Arora and P. Arora, On p - quasihyponormal operators for 0 < p < 1, Yokohama Math J., 41 (1993), 25-29.
  6. M. Berkani, On a class of quasi-Fredholm operators, Int. Equ. Oper. Theory., 34 (1999), 244-249. https://doi.org/10.1007/BF01236475
  7. M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Am. Math. Soc. 130 (2002), 1717-1723. https://doi.org/10.1090/S0002-9939-01-06291-8
  8. M. Berkani and A. Arroud, Generalized Weyl's theorem and hyponormal operators, J. Austra. Math. Soc. 76 (2004), 291-302. https://doi.org/10.1017/S144678870000896X
  9. M. Berkani and J.J. Koliha, Weyl's type theorems for bounded linear operators, Acta. Sci. Math(Szeged). 69 (2003), 379-391.
  10. M. Berkani and M. Sarih, On semi B - Fredholm operators, Glasgow Math. J. 43 (2001), 457-465.
  11. X. Cao, M. Guo and B. Meng, Weyl type theorems for p - hyponormal and M - hyponormal operators, Studia Math. 163 (2004), 177-188. https://doi.org/10.4064/sm163-2-5
  12. S.L. Campbell and B.C Gupta, On k - quasihyponormal operators, Math. Joponica. 23 (1978), 185-189.
  13. M. Cho, M. Ito and S. Oshiro, Weyl's theorem holds for p - hyponormal operators, Glasgow Math. J. 39 (1997), 217-220. https://doi.org/10.1017/S0017089500032092
  14. L.A. Coburn, Weyl's theorem for nonnormal operators, Michigan. Math. J. 13 (1966), 285-288. https://doi.org/10.1307/mmj/1031732778
  15. H Crawford Rhaly, Posinormal Operators, J.Math. Soc. Japan. 46 (1994), 587-605. https://doi.org/10.2969/jmsj/04640587
  16. R. E. Curto and Y. M. Han, Weyl's theorem holds for algebraically paranormal operators, Int. Equ. Oper. Theory. 47 (2003), 307-314. https://doi.org/10.1007/s00020-002-1164-1
  17. R. E. Curto and Y. M. Han, Generalized Browder's and Weyl's theorems for Banach space operators, J. Math. Anal. Appl. 336 (2007), 1424-1442. https://doi.org/10.1016/j.jmaa.2007.03.060
  18. B.P. Duggal and S.V. Djorjovic, Weyl's theorem in the class of algebraically p - hyponormal operators, Comment. Math. Prace Mat. 40 (2000), 49-56.
  19. M. Fuji, S. Izumino and R. Nakamoto, Classes of operators determined by the Heinz - Kato - Furuta inequality and the Holder - McCarthy nequality, Nihonkai Math. J. 5 (1994), 61-67.
  20. T. Furuta, On the class of paranormal operators, Proc. Japan Acad. 43 (1967), 594-598. https://doi.org/10.3792/pja/1195521514
  21. T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal including class of log - hyponormal and several related classes, Scientiae. Mathematicae. 1 (1998), 389-403.
  22. M. Fujii, D. Jung, S. H. Lee, M. Y. Lee and R. Nakamoto, Some classes of operators related to paranormal and log - hyponormal operators, Mathematica japonica, Vol. 51, No: 3 (2000), 395-402.
  23. P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton. 1967
  24. Y. M. Han and W. Y. Lee, Weyl's theorem holds for algebraically hyponormal operators, Proc. Amer. Math. Soc. 128 (2000), 2291-2296. https://doi.org/10.1090/S0002-9939-00-05741-5
  25. J. K. Han, H. Y. Lee and W. Y. Lee, Invertible completions of 2 2 upper triangular operator matrices, Proc. Am. Math. Soc., 128 (2000), 119-123. https://doi.org/10.1090/S0002-9939-99-04965-5
  26. Istratescu. V, Saito. T, Yoshino. T, On a class of operators, Tohoku math. J. 18 (1966), 410-413. https://doi.org/10.2748/tmj/1178243383
  27. K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Mathematical Society Monographs New Series 20, Clarendon Press, Oxford, 2000.
  28. S. Mecheri, Generalized Weyl's theorem for some classes of operators, Kyungpook Math. J., to appear.
  29. S. Mecheri, Bishop's property ($\beta$) and Riesz idempotent for k - quasi - paranormal operators, Banach J. Math. Anal., 6 (2012), no. 1, 147-154. https://doi.org/10.15352/bjma/1337014673
  30. D. Senthilkumar , P. Maheswari Naik and N. Sivakumar, Weyl type theorems for k - quasi - paranormal operators, Communicated.
  31. K. Tanahashi, Putnam's Inequality for log-hyponormal operators, Integral Equations Operator Theory., 43 (2004), 364-372.
  32. A. Uchiyama and K. Tanahashi, Bishop's property ($\beta$) for paranormal operators, Oper. Matrices., 3 (2009), 517-524.
  33. H. Weyl, Uber beschrankte quadratische Formen, deren Differenz vollsteig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392. https://doi.org/10.1007/BF03019655
  34. D. Xia Spectral Theory of Hyponormal Operators, Birkhauser Verlag, Boston, 1983.
  35. T. Yamazaki and M. Yanagida, A further generalization of paranormal operators, Scientiae Mathematicae, Vol. 3, No: 1 (2000), 23-31.
  36. Young Min Han and Won Hee Na, A note on quasiparanormal operators, Mediterr. J. Math., In press.