References
- P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer Academic Publishers (2004), Dordrecht, Boston, London.
- P. Aiena and T. L. Miller, On generalized a - Browder's theorem, Studia. Math., 180 (2007), 285-300. https://doi.org/10.4064/sm180-3-7
- A. Aluthge,On p - hyponormal operators for 0 < p < 1, Integral equations operator theory., 13 (1990) no. 3, 307-315. https://doi.org/10.1007/BF01199886
- T. Ando, Operators with a norm conditions, Acta. Sci. Math (Szeged)., 33 (1972), 169-178.
- S.C. Arora and P. Arora, On p - quasihyponormal operators for 0 < p < 1, Yokohama Math J., 41 (1993), 25-29.
- M. Berkani, On a class of quasi-Fredholm operators, Int. Equ. Oper. Theory., 34 (1999), 244-249. https://doi.org/10.1007/BF01236475
- M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Am. Math. Soc. 130 (2002), 1717-1723. https://doi.org/10.1090/S0002-9939-01-06291-8
- M. Berkani and A. Arroud, Generalized Weyl's theorem and hyponormal operators, J. Austra. Math. Soc. 76 (2004), 291-302. https://doi.org/10.1017/S144678870000896X
- M. Berkani and J.J. Koliha, Weyl's type theorems for bounded linear operators, Acta. Sci. Math(Szeged). 69 (2003), 379-391.
- M. Berkani and M. Sarih, On semi B - Fredholm operators, Glasgow Math. J. 43 (2001), 457-465.
- X. Cao, M. Guo and B. Meng, Weyl type theorems for p - hyponormal and M - hyponormal operators, Studia Math. 163 (2004), 177-188. https://doi.org/10.4064/sm163-2-5
- S.L. Campbell and B.C Gupta, On k - quasihyponormal operators, Math. Joponica. 23 (1978), 185-189.
- M. Cho, M. Ito and S. Oshiro, Weyl's theorem holds for p - hyponormal operators, Glasgow Math. J. 39 (1997), 217-220. https://doi.org/10.1017/S0017089500032092
- L.A. Coburn, Weyl's theorem for nonnormal operators, Michigan. Math. J. 13 (1966), 285-288. https://doi.org/10.1307/mmj/1031732778
- H Crawford Rhaly, Posinormal Operators, J.Math. Soc. Japan. 46 (1994), 587-605. https://doi.org/10.2969/jmsj/04640587
- R. E. Curto and Y. M. Han, Weyl's theorem holds for algebraically paranormal operators, Int. Equ. Oper. Theory. 47 (2003), 307-314. https://doi.org/10.1007/s00020-002-1164-1
- R. E. Curto and Y. M. Han, Generalized Browder's and Weyl's theorems for Banach space operators, J. Math. Anal. Appl. 336 (2007), 1424-1442. https://doi.org/10.1016/j.jmaa.2007.03.060
- B.P. Duggal and S.V. Djorjovic, Weyl's theorem in the class of algebraically p - hyponormal operators, Comment. Math. Prace Mat. 40 (2000), 49-56.
- M. Fuji, S. Izumino and R. Nakamoto, Classes of operators determined by the Heinz - Kato - Furuta inequality and the Holder - McCarthy nequality, Nihonkai Math. J. 5 (1994), 61-67.
- T. Furuta, On the class of paranormal operators, Proc. Japan Acad. 43 (1967), 594-598. https://doi.org/10.3792/pja/1195521514
- T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal including class of log - hyponormal and several related classes, Scientiae. Mathematicae. 1 (1998), 389-403.
- M. Fujii, D. Jung, S. H. Lee, M. Y. Lee and R. Nakamoto, Some classes of operators related to paranormal and log - hyponormal operators, Mathematica japonica, Vol. 51, No: 3 (2000), 395-402.
- P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton. 1967
- Y. M. Han and W. Y. Lee, Weyl's theorem holds for algebraically hyponormal operators, Proc. Amer. Math. Soc. 128 (2000), 2291-2296. https://doi.org/10.1090/S0002-9939-00-05741-5
- J. K. Han, H. Y. Lee and W. Y. Lee, Invertible completions of 2 2 upper triangular operator matrices, Proc. Am. Math. Soc., 128 (2000), 119-123. https://doi.org/10.1090/S0002-9939-99-04965-5
- Istratescu. V, Saito. T, Yoshino. T, On a class of operators, Tohoku math. J. 18 (1966), 410-413. https://doi.org/10.2748/tmj/1178243383
- K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Mathematical Society Monographs New Series 20, Clarendon Press, Oxford, 2000.
- S. Mecheri, Generalized Weyl's theorem for some classes of operators, Kyungpook Math. J., to appear.
-
S. Mecheri, Bishop's property (
$\beta$ ) and Riesz idempotent for k - quasi - paranormal operators, Banach J. Math. Anal., 6 (2012), no. 1, 147-154. https://doi.org/10.15352/bjma/1337014673 - D. Senthilkumar , P. Maheswari Naik and N. Sivakumar, Weyl type theorems for k - quasi - paranormal operators, Communicated.
- K. Tanahashi, Putnam's Inequality for log-hyponormal operators, Integral Equations Operator Theory., 43 (2004), 364-372.
-
A. Uchiyama and K. Tanahashi, Bishop's property (
$\beta$ ) for paranormal operators, Oper. Matrices., 3 (2009), 517-524. - H. Weyl, Uber beschrankte quadratische Formen, deren Differenz vollsteig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392. https://doi.org/10.1007/BF03019655
- D. Xia Spectral Theory of Hyponormal Operators, Birkhauser Verlag, Boston, 1983.
- T. Yamazaki and M. Yanagida, A further generalization of paranormal operators, Scientiae Mathematicae, Vol. 3, No: 1 (2000), 23-31.
- Young Min Han and Won Hee Na, A note on quasiparanormal operators, Mediterr. J. Math., In press.