• Title/Summary/Keyword: oxide trap

Search Result 254, Processing Time 0.024 seconds

Co-existence of Random Telegraph Noise and Single-Hole-Tunneling State in Gate-All-Around PMOS Silicon Nanowire Field-Effect-Transistors

  • Hong, Byoung-Hak;Lee, Seong-Joo;Hwang, Sung-Woo;Cho, Keun-Hwi;Yeo, Kyoung-Hwan;Kim, Dong-Won;Jin, Gyo-Young;Park, Dong-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.2
    • /
    • pp.80-87
    • /
    • 2011
  • Low temperature hole transport characteristics of gate-all-around p-channel metal oxide semiconductor (PMOS) type silicon nanowire field-effect-transistors with the radius of 5 nm and lengths of 44-46 nm are presented. They show coexisting two single hole states randomly switching between each other. Analysis of Coulomb diamonds of these two switching states reveals a variety of electrostatic effects which is originated by the potential of a single hole captured in the trap near the nanowire.

Influence of the Deposition Temperature on the Structural and Electrical Properties of LPCVD Silicon Films (증착온도가 LPCVD 실리콘 박막의 물성과 전기적 특성에 미치는 영향)

  • 홍찬희;박창엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.760-765
    • /
    • 1992
  • The material properties and the TFT characteristics fabricated on SiOS12T substrate by LPCVD using SiHS14T gas were investigated. The deposition rate showed Arrhenius behavior with an activation energy of 31Kcal/mol. And the transition temperature form amorphous to crystalline deposition was observed at 570$^{\circ}C$-580$^{\circ}C$. The strong(220) texture was observed as the deposition temperature increases. XRD analysis showed that the film texture of the as-deposited polycrystalline silicon does not change after annealing at 850$^{\circ}C$. The fabricated TFT's based on the as-deposited amorphous film showed superior electrical characteristics to those of the as-deposited polycrystalline films. It is considered that the different electrical characteristics result from the difference of flat band voltage(VS1FBT) due to the interface trap density between the gate oxide and the active channel.

Evaluation of nano-sSOI wafer using pseudo-MOSFET (Pseudo-MOSFET을 이용한 nano-sSOI 기판의 특성 평가)

  • Jung, Myung-Ho;Kim, Kwan-Su;Choi, Chel-Jong;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.11-12
    • /
    • 2007
  • The electrical characteristics of strained-SOI wafer were evaluated by using pseudo-MOSFET. The electrical characteristics of sSOI pseudo-MOSFET were superior to conventional SOI device. Moreover, the electrical characteristics were enhanced by forming gas anneal due to reduction of back interface trap density between substrate and buried oxide.

  • PDF

Effect of Alternate Bias Stress on p-channel poly-Si TFT`s (P-채널 다결정 실리콘 박막 트랜지스터의 Alternate Bias 스트레스 효과)

  • 김영호;조봉희;강동헌;길상근;임석범;임동준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.11
    • /
    • pp.869-873
    • /
    • 2001
  • The effects of alternate bias stress on p-channel poly-Si TFT\`s has been systematically investigated. We alternately applied positive and negative bias stress on p-channel poly-Si TFT\`s, device Performance(V$\_$th/, g$\_$m/, leakage current, S-slope) are alternately appeared to be increasing and decreasing. It has been shown that device performance degrade under the negative bias stress while improve under the positive bias stress. This effects have been related to the hot carrier injection into the gate oxide rather than the generation of defect states within the poly-Si/SiO$_2$ interface under alternate bias stress.

  • PDF

Schottky Barrier Thin Film Transistor by using Platinum-silicided Source and Drain (플레티늄-실리사이드를 이용한 쇼트키 장벽 다결정 박막 트랜지스터)

  • Shin, Jin-Wook;Chung, Hong-Bay;Lee, Young-Hie;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.462-465
    • /
    • 2009
  • Schottky barrier thin film transistors (SB-TFT) on polycrystalline silicon(poly-Si) are fabricated by platinum silicided source/drain for p-type SB-TFT. High quality poly-Si film were obtained by crystallizing the amorphous Si film with excimer laser annealing (ELA) or solid phase crystallization (SPC) method, The fabricated poly-Si SB-TFTs showed low leakage current level and a large on/off current ratio larger than 10), Significant improvement of electrical characteristics were obtained by the additional forming gas annealing in 2% $H_2/N_2$ ambient, which is attributed to the termination of dangling bond at the poly-Si grain boundaries as well as the reduction of interface trap states at gate oxide/poly-Si channel.

Epitaxial Growth of $Y_2O_3$ films by Ion Beam Assisted Deposition

  • Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.26-26
    • /
    • 2000
  • High quality epitaxial Y2O3 thin films were prepared on Si(111) and (001) substaretes by using ion beam assisted deposition. As a substrate, clean and chemically oxidized Si wafers were used and the effects of surface state on the film crystallinity were investigated. The crystalline quality of the films were estimated by x-ray scattering, rutherford backscattering spectroscopy/channeling, and high-resolution transmission electron microscopy (HRTEM). The interaction between Y and Si atoms interfere the nucleation of Y2O3 at the initial growth stage, it could be suppressed by the interface SiO2 layer. Therefore, SiO2 layer of the 4-6 layers, which have been known for hindering the crystal growth, could rather enhance the nucleation of the Y2O3 , and the high quality epitaxial film could be grown successfully. Electrical properties of Y2O3 films on Si(001) were measured by C-V and I-V, which revealed that the oxide trap charge density of the film was 1.8$\times$10-8C/$\textrm{cm}^2$ and the breakdown field strength was about 10MV/cm.

  • PDF

Improved Dit between ALD HfAlO Dielectric and InGaAs Substrate Using NH3 Plasma Passivation (InGaAs 위의 NH3 Plasma Passivation을 이용한 ALD HfAlO유전체 계면전하(Dit) 향상)

  • Choi, Jae Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.27-31
    • /
    • 2018
  • The effect of $NH_3$ plasma passivation on the chemical and electrical characteristics of ALD HfAlO dielectric on the InGaAs substrate was investigated. The results show that $NH_3$ plasma passivation exhibit better electrical & chemical performance such as much lower leakage current, lower density of interface trap(Dit) level, and low unstable interfacial oxide. $NH_3$ plasma passivation can effectively enhance interfacial characteristics. Therefore $NH_3$ plasma passivation improved the HfAlO dielectric performance on the InGaAs substrate.

Effects of transition layer in SiO2/SiC by the plasma-assisted oxidation

  • Kim, Dae-Gyeong;Gang, Yu-Seon;Gang, Hang-Gyu;Baek, Min;O, Seung-Hun;Jo, Sang-Wan;Jo, Man-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.193.2-193.2
    • /
    • 2016
  • We evaluate the change in defects in the oxidized SiO2 grown on 4H-SiC (0001) by plasma assisted oxidation, by comparing with that of conventional thermal oxide. In order to investigate the changes in the electronic structure and electrical characteristics of the interfacial reaction between the thin SiO2 and SiC, x-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), DFT calculation and electrical measurements were carried out. We observed that the direct plasma oxide grown at the room temperature and rapid processing time (300 s) has enhanced electrical characteristics (frequency dispersion, hysteresis and interface trap density) than conventional thermal oxide and suppressed interfacial defect state. The decrease in defect state in conduction band edge and stress-induced leakage current (SILC) clearly indicate that plasma oxidation process improves SiO2 quality due to the reduced transition layer and energetically most stable interfacial state between SiO2/SiC controlled by the interstitial C.

  • PDF

Structural, Electrical and Optical Properties of $HfO_2$ Films for Gate Dielectric Material of TTFTs

  • Lee, Won-Yong;Kim, Ji-Hong;Roh, Ji-Hyoung;Moon, Byung-Moo;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.331-331
    • /
    • 2009
  • Hafnium oxide ($HfO_2$) attracted by one of the potential candidates for the replacement of si-based oxides. For applications of the high-k gate dielectric material, high thermodynamic stability and low interface-trap density are required. Furthermore, the amorphous film structure would be more effective to reduce the leakage current. To search the gate oxide materials, metal-insulator-metal (MIM) capacitors was fabricated by pulsed laser deposition (PLD) on indium tin oxide (ITO) coated glass with different oxygen pressures (30 and 50 mTorr) at room temperature, and they were deposited by Au/Ti metal as the top electrode patterned by conventional photolithography with an area of $3.14\times10^{-4}\;cm^2$. The results of XRD patterns indicate that all films have amorphous phase. Field emission scanning electron microscopy (FE-SEM) images show that the thickness of the $HfO_2$ films is typical 50 nm, and the grain size of the $HfO_2$ films increases as the oxygen pressure increases. The capacitance and leakage current of films were measured by a Agilent 4284A LCR meter and Keithley 4200 semiconductor parameter analyzer, respectively. Capacitance-voltage characteristics show that the capacitance at 1 MHz are 150 and 58 nF, and leakage current density of films indicate $7.8\times10^{-4}$ and $1.6\times10^{-3}\;A/cm^2$ grown at 30 and 50 mTorr, respectively. The optical properties of the $HfO_2$ films were demonstrated by UV-VIS spectrophotometer (Scinco, S-3100) having the wavelength from 190 to 900 nm. Because films show high transmittance (around 85 %), they are suitable as transparent devices.

  • PDF

Metal Gate Electrode in SiC MOSFET (SiC MOSFET 소자에서 금속 게이트 전극의 이용)

  • Bahng, W.;Song, G.H.;Kim, N.K.;Kim, S.C.;Seo, K.S.;Kim, H.W.;Kim, E.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.358-361
    • /
    • 2002
  • Self-aligned MOSFETS using a polysilicon gate are widely fabricated in silicon technology. The polysilicon layer acts as a mask for the source and drain implants and does as gate electrode in the final product. However, the usage of polysilicon gate as a self-aligned mask is restricted in fabricating SiC MOSFETS since the following processes such as dopant activation, ohmic contacts are done at the very high temperature to attack the stability of the polysilicon layer. A metal instead of polysilicon can be used as a gate material and even can be used for ohmic contact to source region of SiC MOSFETS, which may reduce the number of the fabrication processes. Co-formation process of metal-source/drain ohmic contact and gate has been examined in the 4H-SiC based vertical power MOSFET At low bias region (<20V), increment of leakage current after RTA was detected. However, the amount of leakage current increment was less than a few tens of ph. The interface trap densities calculated from high-low frequency C-V curves do not show any difference between w/ RTA and w/o RTA. From the C-V characteristic curves, equivalent oxide thickness was calculated. The calculated thickness was 55 and 62nm for w/o RTA and w/ RTA, respectively. During the annealing, oxidation and silicidation of Ni can be occurred. Even though refractory nature of Ni, 950$^{\circ}C$ is high enough to oxidize it. Ni reacts with silicon and oxygen from SiO$_2$ 1ayer and form Ni-silicide and Ni-oxide, respectively. These extra layers result in the change of capacitance of whole oxide layer and the leakage current

  • PDF