• 제목/요약/키워드: organoid

검색결과 44건 처리시간 0.019초

Guidelines for Manufacturing and Application of Organoids: Lung

  • Kyungtae Lim;Mi-Ok Lee;Jinwook Choi;Jung-Hyun Kim;Eun-Mi Kim;Chang Gyu Woo;Chaeuk Chung;Yong-Hee Cho;Seok-Ho Hong;Young-Jae Cho;Sun-Ju Ahn
    • International Journal of Stem Cells
    • /
    • 제17권2호
    • /
    • pp.147-157
    • /
    • 2024
  • The objective of standard guideline for utilization of human lung organoids is to provide the basic guidelines required for the manufacture, culture, and quality control of the lung organoids for use in non-clinical efficacy and inhalation toxicity assessments of the respiratory system. As a first step towards the utilization of human lung organoids, the current guideline provides basic, minimal standards that can promote development of alternative testing methods, and can be referenced not only for research, clinical, or commercial uses, but also by experts and researchers at regulatory institutions when assessing safety and efficacy.

Guidelines for Manufacturing and Application of Organoids: Heart

  • Hyang-Ae Lee;Dong-Hun Woo;Do-Sun Lim;Jisun Oh;C-Yoon Kim;Ok-Nam Bae;Sun-Ju Ahn
    • International Journal of Stem Cells
    • /
    • 제17권2호
    • /
    • pp.130-140
    • /
    • 2024
  • Cardiac organoids have emerged as invaluable tools for assessing the impact of diverse substances on heart function. This report introduces guidelines for general requirements for manufacturing cardiac organoids and conducting cardiac organoid-based assays, encompassing protocols, analytical methodologies, and ethical considerations. In the quest to employ recently developed three-dimensional cardiac organoid models as substitutes for animal testing, it becomes imperative to establish robust criteria for evaluating organoid quality and conducting toxicity assessments. This guideline addresses this need, catering to regulatory requirements, and describes common standards for organoid quality and toxicity assessment methodologies, commensurate with current technological capabilities. While acknowledging the dynamic nature of technological progress and the potential for future comparative studies, this guideline serves as a foundational framework. It offers a comprehensive approach to standardized cardiac organoid testing, ensuring scientific rigor, reproducibility, and ethical integrity in investigations of cardiotoxicity, particularly through the utilization of human pluripotent stem cell-derived cardiac organoids.

Guidelines for Manufacturing and Application of Organoids: Brain

  • Taehwan Kwak;Si-Hyung Park;Siyoung Lee;Yujeong Shin;Ki-Jun Yoon;Seung-Woo Cho;Jong-Chan Park;Seung-Ho Yang;Heeyeong Cho;Heh-In Im;Sun-Ju Ahn;Woong Sun;Ji Hun Yang
    • International Journal of Stem Cells
    • /
    • 제17권2호
    • /
    • pp.158-181
    • /
    • 2024
  • This study offers a comprehensive overview of brain organoids for researchers. It combines expert opinions with technical summaries on organoid definitions, characteristics, culture methods, and quality control. This approach aims to enhance the utilization of brain organoids in research. Brain organoids, as three-dimensional human cell models mimicking the nervous system, hold immense promise for studying the human brain. They offer advantages over traditional methods, replicating anatomical structures, physiological features, and complex neuronal networks. Additionally, brain organoids can model nervous system development and interactions between cell types and the microenvironment. By providing a foundation for utilizing the most human-relevant tissue models, this work empowers researchers to overcome limitations of two-dimensional cultures and conduct advanced disease modeling research.

Guidelines for Manufacturing and Application of Organoids: Skin

  • Seunghee Lee;Yeri Alice Rim;Juryun Kim;Su Hyon Lee;Hye Jung Park;Hyounwoo Kim;Sun-Ju Ahn;Ji Hyeon Ju
    • International Journal of Stem Cells
    • /
    • 제17권2호
    • /
    • pp.182-193
    • /
    • 2024
  • To address the limitations of animal testing, scientific research is increasingly focused on developing alternative testing methods. These alternative tests utilize cells or tissues derived from animals or humans for in vitro testing, as well as artificial tissues and organoids. In western countries, animal testing for cosmetics has been banned, leading to the adoption of artificial skin for toxicity evaluation, such as skin corrosion and irritation assessments. Standard guidelines for skin organoid technology becomes necessary to ensure consistent data and evaluation in replacing animal testing with in vitro methods. These guidelines encompass aspects such as cell sourcing, culture techniques, quality requirements and assessment, storage and preservation, and organoid-based assays.

Essential Guidelines for Manufacturing and Application of Organoids

  • Sun-Ju Ahn;Sungin Lee;Dayeon Kwon;Sejeong Oh;Chihye Park;Sooyeon Jeon;Jin Hee Lee;Tae Sung Kim;Il Ung Oh
    • International Journal of Stem Cells
    • /
    • 제17권2호
    • /
    • pp.102-112
    • /
    • 2024
  • An organoid is a self-organized three-dimensional structure derived from stem cells that mimics the structure, cell composition, and functional characteristics of specific organs and tissues and is used for evaluating the safety and effectiveness of drugs and the toxicity of industrial chemicals. Organoid technology is a new methodology that could replace testing on animals testing and accelerate development of precision and regenerative medicine. However, large variations in production can occur between laboratories with low reproducibility of the production process and no internationally agreed standards for quality evaluation factors at endpoints. To overcome these barriers that hinder the regulatory acceptance and commercialization of organoids, Korea established the Organoid Standards Initiative in September 2023 with various stakeholders, including industry, academia, regulatory agencies, and standard development experts, through public and private partnerships. This developed general guidelines for organoid manufacturing and quality evaluation and for quality evaluation guidelines for organoid-specific manufacturing for the liver, intestines, and heart through extensive evidence analysis and consensus among experts. This report is based on the common standard guideline v1.0, which is a general organoid manufacturing and quality evaluation to promote the practical use of organoids. This guideline does not focus on specific organoids or specific contexts of use but provides guidance to organoid makers and users on materials, procedures, and essential quality assessment methods at end points that are essential for organoid production applicable at the current technology level.

Guidelines for Manufacturing and Application of Organoids: Kidney

  • Hyun Mi Kang;Dong Sung Kim;Yong Kyun Kim;Kunyoo Shin;Sun-Ju Ahn;Cho-Rok Jung
    • International Journal of Stem Cells
    • /
    • 제17권2호
    • /
    • pp.141-146
    • /
    • 2024
  • Recent advancements in organoid technology have led to a vigorous movement towards utilizing it as a substitute for animal experiments. Organoid technology offers versatile applications, particularly in toxicity testing of pharmaceuticals or chemical substances. However, for the practical use in toxicity testing, minimal guidance is required to ensure reliability and relevance. This paper aims to provide minimal guidelines for practical uses of kidney organoids derived from human pluripotent stem cells as a toxicity evaluation model in vitro.

Recent advances in organoid culture for insulin production and diabetes therapy: methods and challenges

  • Dayem, Ahmed Abdal;Lee, Soo Bin;Kim, Kyeongseok;Lim, Kyung Min;Jeon, Tak-il;Cho, Ssang-Goo
    • BMB Reports
    • /
    • 제52권5호
    • /
    • pp.295-303
    • /
    • 2019
  • Breakthroughs in stem cell technology have contributed to disease modeling and drug screening via organoid technology. Organoid are defined as three-dimensional cellular aggregations derived from adult tissues or stem cells. They recapitulate the intricate pattern and functionality of the original tissue. Insulin is secreted mainly by the pancreatic ${\beta}$ cells. Large-scale production of insulin-secreting ${\beta}$ cells is crucial for diabetes therapy. Here, we provide a brief overview of organoids and focus on recent advances in protocols for the generation of pancreatic islet organoids from pancreatic tissue or pluripotent stem cells for insulin secretion. The feasibility and limitations of organoid cultures derived from stem cells for insulin production will be described. As the pancreas and gut share the same embryological origin and produce insulin, we will also discuss the possible application of gut organoids for diabetes therapy. Better understanding of the challenges associated with the current protocols for organoid culture facilitates development of scalable organoid cultures for applications in biomedicine.

Differentiation of CD31-Positive Vascular Endothelial Cells from Organoid Culture of Dental Pulp Stem Cells

  • Seo, Eun Jin;Park, Jae Kyung;Jeong, Hoim;Kang, Jung Sook;Kim, Hyung-Ryong;Jang, Il Ho
    • International Journal of Oral Biology
    • /
    • 제43권2호
    • /
    • pp.77-82
    • /
    • 2018
  • The mesenchymal stem cells (MSCs) that reside in dental tissues hold a great potential for future applications in regenerative dentistry. In this study, we used human dental pulp cells, isolated from the molars (DPCs), in order to establish the organoid culture. DPCs were established after growing pulp cells in an MSC expansion media (MSC-EM). DPCs were subjected to organoid growth media (OGM) in comparison with human dental pulp stem cells (DPSCs). Inside the extracellular matrix in the OGM, the DPCs and DPSCs readily formed vessel-like structures, which were not observed in the MSC-EM. Immunocytochemistry analysis and flow cytometry analysis showed the elevated expression of CD31 in the DPCs and DPSCs cultured in the OGM. These results suggest endothelial cell-prone differentiation of the DPCs and DPSCs in organoid culture condition.

Current status and prospects of organoid-based regenerative medicine

  • Woo Hee Choi;Dong Hyuck Bae;Jongman Yoo
    • BMB Reports
    • /
    • 제56권1호
    • /
    • pp.10-14
    • /
    • 2023
  • Organoids derived from stem cells or organ-specific progenitors are self-organizable, self-renewable, and multicellular three-dimensional (3D) structures that can mimic the function and structure of the derived tissue. Due to such characteristics, organoids are attracting attention as an excellent ex vivo model for drug screening at the stage of drug development. In addition, since the applicability of organoids as therapeutics for tissue regeneration has been embossed, the development of various organoids-based regenerative medicine has been rapidly progressing, reaching the clinical trial stage. In this review, we give a general overview of organoids and describe current status and prospects of organoid-based regenerative medicine, focusing on organoid-based regenerative therapeutics currently under development including clinical trials.

Development of bioinformatics and multi-omics analyses in organoids

  • Doyeon Ha;JungHo Kong;Donghyo Kim;Kwanghwan Lee;Juhun Lee;Minhyuk Park;Hyunsoo Ahn;Youngchul Oh;Sanguk Kim
    • BMB Reports
    • /
    • 제56권1호
    • /
    • pp.43-48
    • /
    • 2023
  • Pre-clinical models are critical in gaining mechanistic and biological insights into disease progression. Recently, patient-derived organoid models have been developed to facilitate our understanding of disease development and to improve the discovery of therapeutic options by faithfully recapitulating in vivo tissues or organs. As technological developments of organoid models are rapidly growing, computational methods are gaining attention in organoid researchers to improve the ability to systematically analyze experimental results. In this review, we summarize the recent advances in organoid models to recapitulate human diseases and computational advancements to analyze experimental results from organoids.