References
- Li X, Nadauld L, Ootani A et al (2014) Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat Med 20, 769-777 https://doi.org/10.1038/nm.3585
- Artegiani B, van Voorthuijsen L, Lindeboom RGH et al (2019) Probing the tumor suppressor function of BAP1 in CRISPR-engineered human liver organoids. Cell Stem Cell 24, 927-943 e6
- Ringel T, Frey N, Ringnalda F et al (2020) Genome-scale CRISPR screening in human intestinal organoids identifies drivers of TGF-β resistance. Cell Stem Cell 26, 431-440 e8
- Michels BE, Mosa MH, Streibl BI et al (2020) Pooled in vitro and in vivo CRISPR-Cas9 screening identifies tumor suppressors in human colon organoids. Cell Stem Cell 26, 782-792 e7
- Takeda H, Kataoka S, Nakayama M et al (2019) CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc Natl Acad Sci U S A 116, 15635-15644 https://doi.org/10.1073/pnas.1904714116
- Ungricht R, Guibbal L, Lasbennes MC et al (2022) Genome-wide screening in human kidney organoids identifies developmental and disease-related aspects of nephrogenesis. Cell Stem Cell 29, 160-175 e7
- Beumer J, Geurts MH, Lamers MM et al (2021) A CRISPR/ Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses. Nat Commun 12, 5498
- Schwank G, Koo BK, Sasselli V et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653-658 https://doi.org/10.1016/j.stem.2013.11.002
- Khurana E, Fu Y, Colonna V et al (2013) Integrative annotation of variants from 1092 humans: application to cancer genomics. Science 342, 1235587
- Ng PC and Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11, 863-874 https://doi.org/10.1101/gr.176601
- Kim D, Han SK, Lee K, Kim I, Kong JH and Kim S (2019) Evolutionary coupling analysis identifies the impact of disease-associated variants at less-conserved sites. Nucleic Acids Res 47, e94
- Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7, 248-249 https://doi.org/10.1038/nmeth0410-248
- Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M and Beroud C (2009) Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37, e67
- Arnold F, Gout J, Wiese H et al (2021) RINT1 regulates SUMOylation and the DNA damage response to preserve cellular homeostasis in pancreatic cancer. Cancer Res 81, 1758-1774 https://doi.org/10.1158/0008-5472.CAN-20-2633
- Schadt EE, Lamb J, Yang X et al (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37, 710-717 https://doi.org/10.1038/ng1589
- Chen Y, Zhu J, Lum PY et al (2008) Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429-435 https://doi.org/10.1038/nature06757
- Cowan CS, Renner M, de Gennaro M et al (2020) Cell types of the human retina and its organoids at single-cell resolution. Cell 182, 1623-1640 e34
- Kanton S, Boyle MJ, He Z et al (2019) Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418-422 https://doi.org/10.1038/s41586-019-1654-9
- Kathuria A, Lopez-Lengowski K, Vater M, McPhie D, Cohen BM and Karmacharya R (2020) Transcriptome analysis and functional characterization of cerebral organoids in bipolar disorder. Genome Med 12, 34
- Liu K, Newbury PA, Glicksberg BS et al (2019) Evaluating cell lines as models for metastatic breast cancer through integrative analysis of genomic data. Nat Commun 10, 2138
- Krieger TG, le Blanc S, Jabs J et al (2021) Single-cell analysis of patient-derived PDAC organoids reveals cell state heterogeneity and a conserved developmental hierarchy. Nat Commun 12, 5826
- Norkin M, Ordonez-Moran P and Huelsken J (2021) Highcontent, targeted RNA-seq screening in organoids for drug discovery in colorectal cancer. Cell Rep 35, 109026
- Raspe E, Decraene C and Berx G (2012) Gene expression profiling to dissect the complexity of cancer biology: Pitfalls and promise. Semin Cancer Biol 22, 250-260 https://doi.org/10.1016/j.semcancer.2012.02.011
- Menche J, Sharma A, Kitsak M et al (2015) Uncovering disease-disease relationships through the incomplete interactome. Science 347, 1257601
- Hofree M, Shen JP, Carter H, Gross A and Ideker T (2013) Network-based stratification of tumor mutations. Nat Methods 10, 1108-1115 https://doi.org/10.1038/nmeth.2651
- Kong JH, Lee H, Kim D et al (2020) Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun 11, 5485
- Amiri A, Coppola G, Scuderi S et al (2018) Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science 362, eaat6720
- Gordon A, Yoon SJ, Tran SS et al (2021) Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat Neurosci 24, 331-342 https://doi.org/10.1038/s41593-021-00802-y
- Trevino AE, Sinnott-Armstrong N, Andersen J et al (2020) Chromatin accessibility dynamics in a model of human forebrain development. Science 367, eaay1645
- Broutier L, Mastrogiovanni G, Verstegen MMA et al (2017) Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 23, 1424- 1435 https://doi.org/10.1038/nm.4438
- Gao D, Vela I, Sboner A et al (2014) Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176-187 https://doi.org/10.1016/j.cell.2014.08.016
- Boj SF, Hwang CI, Baker LA et al (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324-338 https://doi.org/10.1016/j.cell.2014.12.021
- Codrich M, Dalla E, Mio C et al (2021) Integrated multiomics analyses on patient-derived CRC organoids highlight altered molecular pathways in colorectal cancer progression involving PTEN. J Exp Clin Cancer Res 40, 198
- Toshimitsu K, Takano A, Fujii M et al (2022) Organoid screening reveals epigenetic vulnerabilities in human colorectal cancer. Nat Chem Biol 18, 605-614 https://doi.org/10.1038/s41589-022-00984-x
- Chen J, Zhao L, Peng H et al (2021) An organoid-based drug screening identified a menin-MLL inhibitor for endometrial cancer through regulating the HIF pathway. Cancer Gene Ther 28, 112-125 https://doi.org/10.1038/s41417-020-0190-y
- Yan HHN, Siu HC, Law S et al (2018) A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23, 882-897 e11
- Schutte M, Risch T, Abdavi-Azar N et al (2017) Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat Commun 8, 14262
- Schumacher D, Andrieux G, Boehnke K et al (2019) Heterogeneous pathway activation and drug response modelled in colorectal-tumor-derived 3D cultures. PLoS Genet 15, e1008076
- Mills RJ, Parker BL, Quaife-Ryan GA et al (2019) Drug screening in human PSC-cardiac organoids identifies proproliferative compounds acting via the mevalonate pathway. Cell Stem Cell 24, 895-907 e6
- Webber JT, Kaushik S and Bandyopadhyay S (2018) Integration of tumor genomic data with cell lines using multi-dimensional network modules improves cancer pharmacogenomics. Cell Syst 7, 526-536 e6
- Han SK, Kong J, Kim S, Lee JH and Han DH (2019) Exomic and transcriptomic alterations of hereditary gingival fibromatosis. Oral Dis 25, 1374-1383 https://doi.org/10.1111/odi.13093
- Sharifi-Noghabi H, Zolotareva O, Collins CC and Ester M (2019) MOLI: multi-omics late integration with deep neural networks for drug response prediction. Bioinformatics 35, i501-i509 https://doi.org/10.1093/bioinformatics/btz318
- Boutros M, Heigwer F and Laufer C (2015) Microscopybased high-content screening. Cell 163, 1314-1325 https://doi.org/10.1016/j.cell.2015.11.007
- Dekkers JF, Alieva M, Wellens LM et al (2019) High-resolution 3D imaging of fixed and cleared organoids. Nat Protoc 14, 1756-1771 https://doi.org/10.1038/s41596-019-0160-8
- Lukonin I, Serra D, Challet Meylan L et al (2020) Phenotypic landscape of intestinal organoid regeneration. Nature 586, 275-280 https://doi.org/10.1038/s41586-020-2776-9
- Renner H, Grabos M, Becker KJ et al (2020) A fully automated high-throughput workflow for 3d-based chemical screening in human midbrain organoids. Elife 9, e52904
- Renner H, Scholer HR and Bruder JM (2021) Combining automated organoid workflows with artificial intelligencebased analyses: opportunities to build a new generation of interdisciplinary high-throughput screens for Parkinson's disease and beyond. Mov Disord 36, 2745-2762 https://doi.org/10.1002/mds.28775
- Gritti N, le Lim J, Anlas K et al (2021) Morgana: accessible quantitative analysis of organoids with machine learning. Development 148, dev199611
- Kassis T, Hernandez-Gordillo V, Langer R and Griffith LG (2019) OrgaQuant: human intestinal organoid localization and quantification using deep convolutional neural networks. Sci Rep 9, 12479
- Kok RNU, Hebert L, Huelsz-Prince G et al (2020) OrganoidTracker: efficient cell tracking using machine learning and manual error correction. PLoS One 15, e0240802
- Kim E, Choi S, Kang B et al (2020) Creation of bladder assembloids mimicking tissue regeneration and cancer. Nature 588, 664-669 https://doi.org/10.1038/s41586-020-3034-x
- Neal JT, Li X, Zhu J et al (2018) Organoid modeling of the tumor immune microenvironment. Cell 175, 1972-1988e16
- Han SK, Kim D, Lee H, Kim I and Kim S (2018) Divergence of noncoding regulatory elements explains genephenotype differences between human and mouse orthologous genes. Mol Biol Evol 35, 1653-1667 https://doi.org/10.1093/molbev/msy056
- Ha D, Kim D, Kim I et al (2022) Evolutionary rewiring of regulatory networks contributes to phenotypic differences between human and mouse orthologous genes. Nucleic Acids Res 50, 1849-1863 https://doi.org/10.1093/nar/gkac050