DOI QR코드

DOI QR Code

Engineered human cardiac tissues for modeling heart diseases

  • Sungjin Min (Department of Biotechnology, Yonsei University) ;
  • Seung-Woo Cho (Department of Biotechnology, Yonsei University)
  • Received : 2022.10.09
  • Accepted : 2022.11.28
  • Published : 2023.01.31

Abstract

Heart disease is one of the major life-threatening diseases with high mortality and incidence worldwide. Several model systems, such as primary cells and animals, have been used to understand heart diseases and establish appropriate treatments. However, they have limitations in accuracy and reproducibility in recapitulating disease pathophysiology and evaluating drug responses. In recent years, three-dimensional (3D) cardiac tissue models produced using tissue engineering technology and human cells have outperformed conventional models. In particular, the integration of cell reprogramming techniques with bioengineering platforms (e.g., microfluidics, scaffolds, bioprinting, and biophysical stimuli) has facilitated the development of heart-on-a-chip, cardiac spheroid/organoid, and engineered heart tissue (EHT) to recapitulate the structural and functional features of the native human heart. These cardiac models have improved heart disease modeling and toxicological evaluation. In this review, we summarize the cell types for the fabrication of cardiac tissue models, introduce diverse 3D human cardiac tissue models, and discuss the strategies to enhance their complexity and maturity. Finally, recent studies in the modeling of various heart diseases are reviewed.

Keywords

Acknowledgement

This work was supported by the Bio & Medical Technology Development Program (2022M3A9B6082675) of the National Research Foundation of Korea (NRF) funded by the Korean government, the Ministry of Science and ICT (MSIT). This work was also supported by the Yonsei Signature Research Cluster Program of 2021-22-0014.

References

  1. Roth GA, Mensah GA, Johnson CO et al (2020) Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol 76, 2982-3021  https://doi.org/10.1016/j.jacc.2020.11.010
  2. Tani H and Tohyama S (2022) Human engineered heart tissue models for disease modeling and drug discovery. Front Cell Dev Biol 10, 855763 
  3. Liu N and Olson EN (2022) CRISPR modeling and correction of cardiovascular disease. Circ Res 130, 1827-1850  https://doi.org/10.1161/CIRCRESAHA.122.320496
  4. Karbassi E, Fenix A, Marchiano S et al (2020) Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol 17, 341-359  https://doi.org/10.1038/s41569-019-0331-x
  5. Yoshida Y and Yamanaka S (2017) Induced pluripotent stem cells 10 years later: for cardiac applications. Circ Res 120, 1958-1968  https://doi.org/10.1161/CIRCRESAHA.117.311080
  6. Kahn-Krell A, Pretorius D, Ou J et al (2021) Bioreactor suspension culture: differentiation and production of cardiomyocyte spheroids from human induced pluripotent stem cells. Front Bioeng Biotechnol 9, 674260 
  7. Sadahiro T, Yamanaka S and Ieda M (2015) Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications. Circ Res 116, 1378-1391  https://doi.org/10.1161/CIRCRESAHA.116.305374
  8. Ieda M, Fu JD, Delgado-Olguin P et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375-386  https://doi.org/10.1016/j.cell.2010.07.002
  9. Wang H, Cao N, Spencer CI et al (2014) Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4. Cell Rep 6, 951-960  https://doi.org/10.1016/j.celrep.2014.01.038
  10. Paoletti C, Divieto C, Tarricone G, Di Meglio F, Nurzynska D and Chiono V (2020) MicroRNA-mediated direct reprogramming of human adult fibroblasts toward cardiac phenotype. Front Bioeng Biotechnol 8, 529 
  11. Kurotsu S, Suzuki T and Ieda M (2017) Direct reprogramming, epigenetics, and cardiac regeneration. J Card Fail 23, 552-557  https://doi.org/10.1016/j.cardfail.2017.05.009
  12. Guo Y and Pu WT (2020) Cardiomyocyte maturation: new phase in development. Circ Res 126, 1086-1106  https://doi.org/10.1161/CIRCRESAHA.119.315862
  13. Pinto AR, Ilinykh A, Ivey MJ et al (2016) Revisiting cardiac cellular composition. Circ Res 118, 400-409  https://doi.org/10.1161/CIRCRESAHA.115.307778
  14. Kamo T, Akazawa H and Komuro I (2015) Cardiac nonmyocytes in the hub of cardiac hypertrophy. Circ Res 117, 89-98  https://doi.org/10.1161/CIRCRESAHA.117.305349
  15. Morrissette-McAlmon J, Ginn B, Somers S et al (2020) Biomimetic model of contractile cardiac tissue with endothelial networks stabilized by adipose-derived stromal/stem cells. Sci Rep 10, 8387 
  16. Tsukamoto Y, Akagi T and Akashi M (2020) Vascularized cardiac tissue construction with orientation by layer-by-layer method and 3D printer. Sci Rep 10, 5484 
  17. Koivisto M, Tolvanen TA, Toimela T et al (2022) Functional human cell-based vascularised cardiac tissue model for biomedical research and testing. Sci Rep 12, 13459 
  18. Giacomelli E, Bellin M, Sala L et al (2017) Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development 144, 1008-1017  https://doi.org/10.1242/dev.143438
  19. Hamad S, Derichsweiler D, Gaspar JA et al (2022) High-efficient serum-free differentiation of endothelial cells from human iPS cells. Stem Cell Res Ther 13, 251 
  20. Palpant NJ, Pabon L, Friedman CE et al (2017) Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc 12, 15-31  https://doi.org/10.1038/nprot.2016.153
  21. Zhang J, Tao R, Campbell KF et al (2019) Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors. Nat Commun 10, 2238 
  22. Giacomelli E, Meraviglia V, Campostrini G et al (2020) Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal noncardiomyocyte contributions to heart disease. Cell Stem Cell 26, 862-879 e811 
  23. Kahn-Krell A, Pretorius D, Guragain B et al (2022) A three-dimensional culture system for generating cardiac spheroids composed of cardiomyocytes, endothelial cells, smooth-muscle cells, and cardiac fibroblasts derived from human induced-pluripotent stem cells. Front Bioeng Biotechnol 10, 908848 
  24. Swirski FK and Nahrendorf M (2018) Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat Rev Immunol 18, 733-744  https://doi.org/10.1038/s41577-018-0065-8
  25. Hulsmans M, Clauss S, Xiao L et al (2017) Macrophages facilitate electrical conduction in the heart. Cell 169, 510-522 e520 
  26. Colliva A, Braga L, Giacca M and Zacchigna S (2020) Endothelial cell-cardiomyocyte crosstalk in heart development and disease. J Physiol 598, 2923-2939  https://doi.org/10.1113/JP276758
  27. Karra R, Walter AO and Wu SM (2017) The relationship between cardiac endothelium and fibroblasts: it's complicated. J Clin Invest 127, 2892-2894  https://doi.org/10.1172/JCI95492
  28. Mai J, Virtue A, Shen J, Wang H and Yang XF (2013) An evolving new paradigm: endothelial cells--conditional innate immune cells. J Hematol Oncol 6, 61 
  29. Hall C, Gehmlich K, Denning C and Pavlovic D (2021) Complex relationship between cardiac fibroblasts and cardiomyocytes in health and disease. J Am Heart Assoc 10, e019338 
  30. Twardowski RL and Black LD 3rd (2014) Cardiac fibroblasts support endothelial cell proliferation and sprout formation but not the development of multicellular sprouts in a fibrin gel co-culture model. Ann Biomed Eng 42, 1074-1084  https://doi.org/10.1007/s10439-014-0971-2
  31. Xuan Y, Chen C, Wen Z and Wang DW (2022) The roles of cardiac fibroblasts and endothelial cells in myocarditis. Front Cardiovasc Med 9, 882027 
  32. Polonchuk L, Chabria M, Badi L et al (2017) Cardiac spheroids as promising in vitro models to study the human heart microenvironment. Sci Rep 7, 7005 
  33. Min S, Lee HJ, Jin Y et al (2020) Biphasic electrical pulse by a micropillar electrode array enhances maturation and drug response of reprogrammed cardiac spheroids. Nano Lett 20, 6947-6956  https://doi.org/10.1021/acs.nanolett.0c01141
  34. Lee JM, Park DY, Yang L et al (2018) Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Sci Rep 8, 17145 
  35. Zimmermann WH, Schneiderbanger K, Schubert P et al (2002) Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90, 223-230  https://doi.org/10.1161/hh0202.103644
  36. Takada T, Sasaki D, Matsuura K et al (2022) Aligned human induced pluripotent stem cell-derived cardiac tissue improves contractile properties through promoting unidirectional and synchronous cardiomyocyte contraction. Biomaterials 281, 121351 
  37. Zhang W, Kong CW, Tong MH et al (2017) Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in 3D collagen matrix: effects of niche cell supplementation and mechanical stimulation. Acta Biomater 49, 204-217  https://doi.org/10.1016/j.actbio.2016.11.058
  38. Rivera-Arbelaez JM, Cofino-Fabres C, Schwach V et al (2022) Contractility analysis of human engineered 3D heart tissues by an automatic tracking technique using a standalone application. PLoS One 17, e0266834 
  39. Marsano A, Conficconi C, Lemme M et al (2016) Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 16, 599-610  https://doi.org/10.1039/C5LC01356A
  40. Paloschi V, Sabater-Lleal M, Middelkamp H et al (2021) Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases. Cardiovasc Res 117, 2742-2754  https://doi.org/10.1093/cvr/cvab088
  41. Cho AN, Jin Y, An Y et al (2021) Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun 12, 4730 
  42. Kim J, Lee KT, Lee JS et al (2021) Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood-brain barrier. Nat Biomed Eng 5, 830-846  https://doi.org/10.1038/s41551-021-00743-8
  43. Vivas A, IJspeert C, Pan JY et al (2022) Generation and culture of cardiac microtissues in a microfluidic chip with a reversible open top enables electrical pacing, dynamic drug dosing and endothelial cell co-culture. Adv Mater Technol 7, 2101355 
  44. Huebsch N, Charrez B, Neiman G et al (2022) Metabolically driven maturation of human-induced-pluripotentstem-cell-derived cardiac microtissues on microfluidic chips. Nat Biomed Eng 6, 372-388  https://doi.org/10.1038/s41551-022-00884-4
  45. Drakhlis L, Biswanath S, Farr CM et al (2021) Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol 39, 737-746  https://doi.org/10.1038/s41587-021-00815-9
  46. Hofbauer P, Jahnel SM, Papai N et al (2021) Cardioids reveal self-organizing principles of human cardiogenesis. Cell 184, 3299-3317 e3222 
  47. Lewis-Israeli YR, Wasserman AH, Gabalski MA et al (2021) Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat Commun 12, 5142 
  48. Cho J, Lee H, Rah W, Chang HJ and Yoon YS (2022) From engineered heart tissue to cardiac organoid. Theranostics 12, 2758-2772  https://doi.org/10.7150/thno.67661
  49. Cui H, Liu Y, Cheng Y et al (2014) In vitro study of electroactive tetraaniline-containing thermosensitive hydrogels for cardiac tissue engineering. Biomacromolecules 15, 1115-1123  https://doi.org/10.1021/bm4018963
  50. Elkhoury K, Morsink M, Sanchez-Gonzalez L, Kahn C, Tamayol A and Arab-Tehrany E (2021) Biofabrication of natural hydrogels for cardiac, neural, and bone tissue engineering applications. Bioact Mater 6, 3904-3923  https://doi.org/10.1016/j.bioactmat.2021.03.040
  51. Jin Y, Lee JS, Kim J et al (2018) Three-dimensional brain-like microenvironments facilitate the direct reprogramming of fibroblasts into therapeutic neurons. Nat Biomed Eng 2, 522-539  https://doi.org/10.1038/s41551-018-0260-8
  52. Lee JS, Roh YH, Choi YS et al (2019) Tissue beads: tissue-specific extracellular matrix microbeads to potentiate reprogrammed cell-based therapy. Adv Funct Mater 29, 1807803 
  53. Jin Y, Kim J, Lee JS et al (2018) Vascularized liver organoids generated using induced hepatic tissue and dynamic liver-specific microenvironment as a drug testing platform. Adv Funct Mater 28, 1801954 
  54. Wang RM and Christman KL (2016) Decellularized myocardial matrix hydrogels: in basic research and preclinical studies. Adv Drug Deliv Rev 96, 77-82  https://doi.org/10.1016/j.addr.2015.06.002
  55. Kim S, Min S, Choi YS et al (2022) Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids. Nat Commun 13, 1692 
  56. Das S, Kim SW, Choi YJ et al (2019) Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro. Acta Biomater 95, 188-200  https://doi.org/10.1016/j.actbio.2019.04.026
  57. Tsui JH, Leonard A, Camp ND et al (2021) Tunable electroconductive decellularized extracellular matrix hydrogels for engineering human cardiac microphysiological systems. Biomaterials 272, 120764 
  58. Song M, Jang Y, Kim SJ and Park Y (2022) Cyclic stretching induces maturation of human-induced pluripotent stem cell-derived cardiomyocytes through nuclear-mechanotransduction. Tissue Eng Regen Med 19, 781-792  https://doi.org/10.1007/s13770-021-00427-z
  59. Stoppel WL, Kaplan DL and Black LD 3rd (2016) Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv Drug Deliv Rev 96, 135-155  https://doi.org/10.1016/j.addr.2015.07.009
  60. Radisic M, Park H, Shing H et al (2004) Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 101, 18129-18134  https://doi.org/10.1073/pnas.0407817101
  61. Eng G, Lee BW, Protas L et al (2016) Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun 7, 10312 
  62. Nunes SS, Miklas JW, Liu J et al (2013) Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 10, 781-787  https://doi.org/10.1038/nmeth.2524
  63. Massai D, Pisani G, Isu G et al (2020) Bioreactor platform for biomimetic culture and in situ monitoring of the mechanical response of in vitro engineered models of cardiac tissue. Front Bioeng Biotechnol 8, 733 
  64. Lu K, Seidel T, Cao-Ehlker X et al (2021) Progressive stretch enhances growth and maturation of 3D stem-cell-derived myocardium. Theranostics 11, 6138-6153  https://doi.org/10.7150/thno.54999
  65. Ronaldson-Bouchard K, Ma SP, Yeager K et al (2018) Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556, 239-243  https://doi.org/10.1038/s41586-018-0016-3
  66. Authors/Task Force m, Elliott PM, Anastasakis A et al (2014) 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35, 2733-2779  https://doi.org/10.1093/eurheartj/ehu284
  67. Cassani M, Fernandes S, Vrbsky J, Ergir E, Cavalieri F and Forte G (2020) Combining nanomaterials and developmental pathways to design new treatments for cardiac regeneration: the pulsing heart of advanced therapies. Front Bioeng Biotechnol 8, 323 
  68. Harvey PA and Leinwand LA (2011) The cell biology of disease: cellular mechanisms of cardiomyopathy. J Cell Biol 194, 355-365  https://doi.org/10.1083/jcb.201101100
  69. Hinson JT, Chopra A, Nafissi N et al (2015) HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349, 982-986  https://doi.org/10.1126/science.aaa5458
  70. Clarke SL, Bowron A, Gonzalez IL et al (2013) Barth syndrome. Orphanet J Rare Dis 8, 23 
  71. Wang G, McCain ML, Yang L et al (2014) Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 20, 616-623  https://doi.org/10.1038/nm.3545
  72. Ma Z, Huebsch N, Koo S et al (2018) Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload. Nat Biomed Eng 2, 955-967  https://doi.org/10.1038/s41551-018-0280-4
  73. Guo J, Jiang H, Oguntuyo K, Rios B, Boodram Z and Huebsch N (2021) Interplay of genotype and substrate stiffness in driving the hypertrophic cardiomyopathy phenotype in iPSC-micro-heart muscle arrays. Cell Mol Bioeng 14, 409-425  https://doi.org/10.1007/s12195-021-00684-x
  74. Prondzynski M, Lemoine MD, Zech AT et al (2019) Disease modeling of a mutation in alpha-actinin 2 guides clinical therapy in hypertrophic cardiomyopathy. EMBO Mol Med 11, e11115 
  75. Zhao Y, Rafatian N, Feric NT et al (2019) A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell 176, 913-927 e918 
  76. Wang EY, Kuzmanov U, Smith JB et al (2021) An organ-on-a-chip model for pre-clinical drug evaluation in progressive non-genetic cardiomyopathy. J Mol Cell Cardiol 160, 97-110  https://doi.org/10.1016/j.yjmcc.2021.06.012
  77. Waldmann V, Narayanan K, Combes N, Jost D, Jouven X and Marijon E (2018) Electrical cardiac injuries: current concepts and management. Eur Heart J 39, 1459-1465  https://doi.org/10.1093/eurheartj/ehx142
  78. Moss AJ and Kass RS (2005) Long QT syndrome: from channels to cardiac arrhythmias. J Clin Invest 115, 2018-2024  https://doi.org/10.1172/JCI25537
  79. Goldfracht I, Efraim Y, Shinnawi R et al (2019) Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications. Acta Biomater 92, 145-159  https://doi.org/10.1016/j.actbio.2019.05.016
  80. Goldfracht I, Protze S, Shiti A et al (2020) Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes. Nat Commun 11, 75 
  81. Schwartz PJ and Woosley RL (2016) Predicting the unpredictable: drug-induced QT prolongation and torsades de pointes. J Am Coll Cardiol 67, 1639-1650  https://doi.org/10.1016/j.jacc.2015.12.063
  82. Lemoine MD, Krause T, Koivumaki JT et al (2018) Human induced pluripotent stem cell-derived engineered heart tissue as a sensitive test system for QT prolongation and arrhythmic triggers. Circ Arrhythm Electrophysiol 11, e006035 
  83. Fermini B, Hancox JC, Abi-Gerges N et al (2016) A new perspective in the field of cardiac safety testing through the comprehensive in vitro proarrhythmia assay paradigm. J Biomol Screen 21, 1-11  https://doi.org/10.1177/1087057115594589
  84. Kawatou M, Masumoto H, Fukushima H et al (2017) Modelling torsade de pointes arrhythmias in vitro in 3D human iPS cell-engineered heart tissue. Nat Commun 8, 1078 
  85. MacQueen LA, Sheehy SP, Chantre CO et al (2018) A tissue-engineered scale model of the heart ventricle. Nat Biomed Eng 2, 930-941  https://doi.org/10.1038/s41551-018-0271-5
  86. Munderere R, Kim SH, Kim C and Park SH (2022) The progress of stem cell therapy in myocardial-infarcted heart regeneration: cell sheet technology. Tissue Eng Regen Med 19, 969-986  https://doi.org/10.1007/s13770-022-00467-z
  87. Acun A, Nguyen TD and Zorlutuna P (2019) In vitro aged, hiPSC-origin engineered heart tissue models with age-dependent functional deterioration to study myocardial infarction. Acta Biomater 94, 372-391  https://doi.org/10.1016/j.actbio.2019.05.064
  88. Richards DJ, Li Y, Kerr CM et al (2020) Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat Biomed Eng 4, 446-462  https://doi.org/10.1038/s41551-020-0539-4
  89. Chen T and Vunjak-Novakovic G (2019) Human tissue-engineered model of myocardial ischemia-reperfusion injury. Tissue Eng Part A 25, 711-724  https://doi.org/10.1089/ten.tea.2018.0212
  90. Sebastiao MJ, Gomes-Alves P, Reis I et al (2020) Bioreactor-based 3D human myocardial ischemia/reperfusion in vitro model: a novel tool to unveil key paracrine factors upon acute myocardial infarction. Transl Res 215, 57-74  https://doi.org/10.1016/j.trsl.2019.09.001
  91. Singhal AK, Symons JD, Boudina S, Jaishy B and Shiu YT (2010) Role of endothelial cells in myocardial ischemiareperfusion injury. Vasc Dis Prev 7, 1-14  https://doi.org/10.2174/1874120701007010001
  92. Yadid M, Lind JU, Ardona HAM et al (2020) Endothelial extracellular vesicles contain protective proteins and rescue ischemia-reperfusion injury in a human heart-onchip. Sci Transl Med 12, eaax8005 
  93. Ellis BW, Ronan G, Ren X et al (2022) Human Heart Anoxia and Reperfusion Tissue (HEART) model for the rapid study of exosome bound miRNA expression as biomarkers for myocardial infarction. Small 18, e2201330 
  94. Travers JG, Kamal FA, Robbins J, Yutzey KE and Blaxall BC (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118, 1021-1040  https://doi.org/10.1161/CIRCRESAHA.115.306565
  95. Saadat S, Noureddini M, Mahjoubin-Tehran M et al (2020) Pivotal role of TGF-beta/Smad signaling in cardiac fibrosis: non-coding RNAs as effectual players. Front Cardiovasc Med 7, 588347 
  96. Sadeghi AH, Shin SR, Deddens JC et al (2017) Engineered 3D cardiac fibrotic tissue to study fibrotic remodeling. Adv Healthc Mater 6, 201601434 
  97. Kong M, Lee J, Yazdi IK et al (2019) Cardiac fibrotic remodeling on a chip with dynamic mechanical stimulation. Adv Healthc Mater 8, e1801146 
  98. Mastikhina O, Moon BU, Williams K et al (2020) Human cardiac fibrosis-on-a-chip model recapitulates disease hallmarks and can serve as a platform for drug testing. Biomaterials 233, 119741 
  99. Wang EY, Rafatian N, Zhao Y et al (2019) Biowire model of interstitial and focal cardiac fibrosis. ACS Cent Sci 5, 1146-1158  https://doi.org/10.1021/acscentsci.9b00052
  100. Daly AC, Davidson MD and Burdick JA (2021) 3D bio-printing of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat Commun 12, 753