Acknowledgement
This work was supported by a grant (23212MFDS265) from the Ministry of Food and Drug Safety in 2023.
References
- Vieira de Sa R, Canizares Luna M, Pasterkamp RJ. Advances in central nervous system organoids: a focus on organoidbased models for motor neuron disease. Tissue Eng Part C Methods 2021;27:213-224 https://doi.org/10.1089/ten.tec.2020.0337
- Pacitti D, Privolizzi R, Bax BE. Organs to cells and cells to organoids: the evolution of in vitro central nervous system modelling. Front Cell Neurosci 2019;13:129
- Costamagna G, Comi GP, Corti S. Advancing drug discovery for neurological disorders using iPSC-derived neural organoids. Int J Mol Sci 2021;22:2659
- Giorgi C, Lombardozzi G, Ammannito F, et al. Brain organoids: a game-changer for drug testing. Pharmaceutics 2024;16:443
- Hong YJ, Lee SB, Choi J, Yoon SH, Do JT. A simple method for generating cerebral organoids from human pluripotent stem cells. Int J Stem Cells 2022;15:95-103 https://doi.org/10.15283/ijsc21195
- Kim J. Lo and behold, the lab-grown organs have arrived! Int J Stem Cells 2022;15:1-2 https://doi.org/10.15283/ijsc22026
- Chukwurah E, Osmundsen A, Davis SW, Lizarraga SB. All together now: modeling the interaction of neural with nonneural systems using organoid models. Front Neurosci 2019;13:582
- Makrygianni EA, Chrousos GP. From brain organoids to networking assembloids: implications for neuroendocrinology and stress medicine. Front Physiol 2021;12:621970
- Bhattacharya A, Choi WWY, Muffat J, Li Y. Modeling developmental brain diseases using human pluripotent stem cells-derived brain organoids - progress and perspective. J Mol Biol 2022;434:167386
- Wang H. Modeling neurological diseases with human brain organoids. Front Synaptic Neurosci 2018;10:15
- Wray S. Modelling neurodegenerative disease using brain organoids. Semin Cell Dev Biol 2021;111:60-66 https://doi.org/10.1016/j.semcdb.2020.05.012
- Salick MR, Lubeck E, Riesselman A, Kaykas A. The future of cerebral organoids in drug discovery. Semin Cell Dev Biol 2021;111:67-73 https://doi.org/10.1016/j.semcdb.2020.05.024
- Sun N, Meng X, Liu Y, Song D, Jiang C, Cai J. Applications of brain organoids in neurodevelopment and neurological diseases. J Biomed Sci 2021;28:30
- Tang XY, Wu S, Wang D, et al. Human organoids in basic research and clinical applications. Signal Transduct Target Ther 2022;7:168
- Grenier K, Kao J, Diamandis P. Three-dimensional modeling of human neurodegeneration: brain organoids coming of age. Mol Psychiatry 2020;25:254-274 https://doi.org/10.1038/s41380-019-0500-7
- Susaimanickam PJ, Kiral FR, Park IH. Region specific brain organoids to study neurodevelopmental disorders. Int J Stem Cells 2022;15:26-40 https://doi.org/10.15283/ijsc22006
- Yadav A, Seth B, Chaturvedi RK. Brain organoids: tiny mirrors of human neurodevelopment and neurological disorders. Neuroscientist 2021;27:388-426 https://doi.org/10.1177/1073858420943192
- Muzio L, Consalez GG. Modeling human brain development with cerebral organoids. Stem Cell Res Ther 2013;4:154
- Qian X, Song H, Ming GL. Brain organoids: advances, applications and challenges. Development 2019;146:dev166074
- Zhao HH, Haddad G. Brain organoid protocols and limitations. Front Cell Neurosci 2024;18:1351734
- Kim SH, Chang MY. Application of human brain organoids-opportunities and challenges in modeling human brain development and neurodevelopmental diseases. Int J Mol Sci 2023;24:12528
- Zhou Z, Cong L, Cong X. Patient-derived organoids in precision medicine: drug screening, organoid-on-a-chip and living organoid biobank. Front Oncol 2021;11:762184
- Chen CC, Li HW, Wang YL, et al. Patient-derived tumor organoids as a platform of precision treatment for malignant brain tumors. Sci Rep 2022;12:16399
- Korhonen P, Malm T, White AR. 3D human brain cell models: new frontiers in disease understanding and drug discovery for neurodegenerative diseases. Neurochem Int 2018;120:191-199 https://doi.org/10.1016/j.neuint.2018.08.012
- Liu S, He Y, Yin J, Zhu Q, Liao C, Jiang G. Neurotoxicities induced by micro/nanoplastics: a review focusing on the risks of neurological diseases. J Hazard Mater 2024;469:134054
- Casey S, Carter M, Looney AM, et al. Maternal mid-gestation cytokine dysregulation in mothers of children with autism spectrum disorder. J Autism Dev Disord 2022;52:3919-3932 https://doi.org/10.1007/s10803-021-05271-7
- Jarmund AH, Giskeodegard GF, Ryssdal M, et al. Cytokine patterns in maternal serum from first trimester to term and beyond. Front Immunol 2021;12:752660
- Rash BG, Grove EA. Area and layer patterning in the developing cerebral cortex. Curr Opin Neurobiol 2006;16:25-34 https://doi.org/10.1016/j.conb.2006.01.004
- Berman NE, Johnson JK, Klein RM. Early generation of glia in the intermediate zone of the developing cerebral cortex. Brain Res Dev Brain Res 1997;101:149-164 https://doi.org/10.1016/S0165-3806(97)00060-6
- De Juan Romero C, Borrell V. Coevolution of radial glial cells and the cerebral cortex. Glia 2015;63:1303-1319 https://doi.org/10.1002/glia.22827
- Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature 2013;501:373-379 https://doi.org/10.1038/nature12517
- Pasca AM, Sloan SA, Clarke LE, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 2015;12:671-678 https://doi.org/10.1038/nmeth.3415
- Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 2008;3:519-532
- Huang WK, Wong SZH, Pather SR, et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell 2021;28:1657-1670.e10 https://doi.org/10.1016/j.stem.2021.04.006
- Matsumoto R, Suga H, Aoi T, et al. Congenital pituitary hypoplasia model demonstrates hypothalamic OTX2 regulation of pituitary progenitor cells. J Clin Invest 2020;130:641-654 https://doi.org/10.1172/JCI127378
- Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 2012;10:771-785 https://doi.org/10.1016/j.stem.2012.05.009
- Pomeshchik Y, Klementieva O, Gil J, et al. Human iPSC-derived hippocampal spheroids: an innovative tool for stratifying Alzheimer disease patient-specific cellular phenotypes and developing therapies. Stem Cell Reports 2021;16:2838 https://doi.org/10.1016/j.stemcr.2021.10.003
- Ballabio C, Anderle M, Gianesello M, et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun 2020;11:583
- Jo J, Xiao Y, Sun AX, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 2016;19:248-257
- Smits LM, Reinhardt L, Reinhardt P, et al. Modeling Parkinson's disease in midbrain-like organoids. NPJ Parkinsons Dis 2019;5:5
- Kim H, Xu R, Padmashri R, et al. Pluripotent stem cell-derived cerebral organoids reveal human oligodendrogenesis with dorsal and ventral origins. Stem Cell Reports 2019;12:890-905 https://doi.org/10.1016/j.stemcr.2019.04.011
- Mills RJ, Parker BL, Quaife-Ryan GA, et al. Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell 2019;24:895-907.e6
- Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013;499:481-484 https://doi.org/10.1038/nature12271
- Takebe T, Enomura M, Yoshizawa E, et al. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell 2015;16:556-565 https://doi.org/10.1016/j.stem.2015.03.004
- Guan Y, Xu D, Garfin PM, et al. Human hepatic organoids for the analysis of human genetic diseases. JCI Insight 2017;2:e94954
- Takasato M, Er PX, Becroft M, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 2014;16:118-126 https://doi.org/10.1038/ncb2894
- Li R, Sun L, Fang A, Li P, Wu Q, Wang X. Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein Cell 2017;8:823-833 https://doi.org/10.1007/s13238-017-0479-2
- Omer Javed A, Li Y, et al. Microcephaly modeling of kinetochore mutation reveals a brain-specific phenotype. Cell Rep 2018;25:368-382.e5
- Wang L, Li Z, Sievert D, et al. Loss of NARS1 impairs progenitor proliferation in cortical brain organoids and leads to microcephaly. Nat Commun 2020;11:4038
- Cugola FR, Fernandes IR, Russo FB, et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 2016;534:267-271 https://doi.org/10.1038/nature18296
- Qian X, Nguyen HN, Song MM, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 2016;165:1238-1254 https://doi.org/10.1016/j.cell.2016.04.032
- Mariani J, Coppola G, Zhang P, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 2015;162:375-390 https://doi.org/10.1016/j.cell.2015.06.034
- Wang P, Mokhtari R, Pedrosa E, et al. CRISPR/Cas9- mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism 2017;8:11
- Hali S, Kim J, Kwak TH, Lee H, Shin CY, Han DW. Modelling monogenic autism spectrum disorder using mouse cortical organoids. Biochem Biophys Res Commun 2020;521:164-171 https://doi.org/10.1016/j.bbrc.2019.10.097
- Mellios N, Feldman DA, Sheridan SD, et al. MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol Psychiatry 2018;23:1051-1065 https://doi.org/10.1038/mp.2017.86
- Xiang Y, Tanaka Y, Patterson B, et al. Dysregulation of BRD4 function underlies the functional abnormalities of MeCP2 mutant neurons. Mol Cell 2020;79:84-98.e9 https://doi.org/10.1016/j.molcel.2020.05.016
- Gomes AR, Fernandes TG, Vaz SH, et al. Modeling Rett syndrome with human patient-specific forebrain organoids. Front Cell Dev Biol 2020;8:610427
- Xu R, Brawner AT, Li S, et al. OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of Down syndrome. Cell Stem Cell 2019;24:908-926.e8
- Tang XY, Xu L, Wang J, et al. DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome. J Clin Invest 2021;131:e135763
- Jin M, Pomp O, Shinoda T, et al. Katanin p80, NuMA and cytoplasmic dynein cooperate to control microtubule dynamics. Sci Rep 2017;7:39902
- Srikanth P, Lagomarsino VN, Muratore CR, et al. Shared effects of DISC1 disruption and elevated WNT signaling in human cerebral organoids. Transl Psychiatry 2018;8:77
- Yin J, VanDongen AM. Enhanced neuronal activity and asynchronous calcium transients revealed in a 3D organoid model of Alzheimer's disease. ACS Biomater Sci Eng 2021;7:254-264 https://doi.org/10.1021/acsbiomaterials.0c01583
- Zhao J, Fu Y, Yamazaki Y, et al. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids. Nat Commun 2020;11:5540
- Perez MJ, Ivanyuk D, Panagiotakopoulou V, et al. Loss of function of the mitochondrial peptidase PITRM1 induces proteotoxic stress and Alzheimer's disease-like pathology in human cerebral organoids. Mol Psychiatry 2021;26:5733-5750 https://doi.org/10.1038/s41380-020-0807-4
- Kwak TH, Kang JH, Hali S, et al. Generation of homogeneous midbrain organoids with in vivo-like cellular composition facilitates neurotoxin-based Parkinson's disease modeling. Stem Cells 2020;38:727-740 https://doi.org/10.1002/stem.3163
- Kim H, Park HJ, Choi H, et al. Modeling G2019S-LRRK2 sporadic Parkinson's disease in 3D midbrain organoids. Stem Cell Reports 2019;12:518-531
- Jo J, Yang L, Tran HD, et al. Lewy body-like inclusions in human midbrain organoids carrying glucocerebrosidase and α-synuclein mutations. Ann Neurol 2021;90:490-505 https://doi.org/10.1002/ana.26166
- Quadrato G, Nguyen T, Macosko EZ, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 2017;545:48-53 https://doi.org/10.1038/nature22047
- Renner M, Lancaster MA, Bian S, et al. Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J 2017;36:1316-1329 https://doi.org/10.15252/embj.201694700
- Sloan SA, Darmanis S, Huber N, et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 2017;95:779-790.e6 https://doi.org/10.1016/j.neuron.2017.07.035
- Marton RM, Miura Y, Sloan SA, et al. Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat Neurosci 2019;22:484-491 https://doi.org/10.1038/s41593-018-0316-9
- Madhavan M, Nevin ZS, Shick HE, et al. Induction of myelinating oligodendrocytes in human cortical spheroids. Nat Methods 2018;15:700-706
- Trujillo CA, Gao R, Negraes PD, et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 2019;25:558-569.e7 https://doi.org/10.1016/j.stem.2019.08.002
- Birey F, Andersen J, Makinson CD, et al. Assembly of functionally integrated human forebrain spheroids. Nature 2017;545:54-59 https://doi.org/10.1038/nature22330
- Xiang Y, Tanaka Y, Patterson B, et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 2017; 21:383-398.e7 https://doi.org/10.1016/j.stem.2017.07.007
- Bagley JA, Reumann D, Bian S, Levi-Strauss J, Knoblich JA. Fused cerebral organoids model interactions between brain regions. Nat Methods 2017;14:743-751 https://doi.org/10.1038/nmeth.4304
- Lee JH, Shin H, Shaker MR, et al. Production of human spinal-cord organoids recapitulating neural-tube morphogenesis. Nat Biomed Eng 2022;6:435-448 https://doi.org/10.1038/s41551-022-00868-4
- Cooper F, Gentsch GE, Mitter R, et al. Rostrocaudal patterning and neural crest differentiation of human pre-neural spinal cord progenitors in vitro. Stem Cell Reports 2022;17:894-910 https://doi.org/10.1016/j.stemcr.2022.02.018
- Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 2014;9:2329-2340 https://doi.org/10.1038/nprot.2014.158
- Watanabe M, Buth JE, Vishlaghi N, et al. Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep 2017;21:517-532 https://doi.org/10.1016/j.celrep.2017.09.047
- Wickham J, Corna A, Schwarz N, et al. Human cerebrospinal fluid induces neuronal excitability changes in resected human neocortical and hippocampal brain slices. Front Neurosci 2020;14:283
- Hill CL, Stephens GJ. An introduction to patch clamp recording. Methods Mol Biol 2021;2188:1-19 https://doi.org/10.1007/978-1-0716-0818-0_1
- Passaro AP, Stice SL. Electrophysiological analysis of brain organoids: current approaches and advancements. Front Neurosci 2021;14:622137
- Schroter M, Wang C, Terrigno M, et al. Functional imaging of brain organoids using high-density microelectrode arrays. MRS Bull 2022;47:530-544 https://doi.org/10.1557/s43577-022-00282-w
- Shin H, Jeong S, Lee JH, Sun W, Choi N, Cho IJ. 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics. Nat Commun 2021;12:492
- Telias M, Ben-Yosef D. Neural stem cell replacement: a possible therapy for neurodevelopmental disorders? Neural Regen Res 2015;10:180-182
- Durens M, Nestor J, Williams M, et al. High-throughput screening of human induced pluripotent stem cell-derived brain organoids. J Neurosci Methods 2020;335:108627
- Huang Q, Tang B, Romero JC, et al. Shell microelectrode arrays (MEAs) for brain organoids. Sci Adv 2022;8:eabq5031
- Nickels SL, Modamio J, Mendes-Pinheiro B, Monzel AS, Betsou F, Schwamborn JC. Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease. Stem Cell Res 2020;46:101870
- Anand P, Stahel VP. Review the safety of Covid-19 mRNA vaccines: a review. Patient Saf Surg 2021;15:20
- Brussow H. COVID-19: vaccination problems. Environ Microbiol 2021;23:2878-2890