• Title/Summary/Keyword: norm bounded uncertainty

Search Result 46, Processing Time 0.028 seconds

Robust pole assignment inside a disk of uncertain linear system (불확정성 선형시스템의 원판내 강인 극점배치)

  • Park, Sang-Min;Kim, Jin-Hoon;Ryu, Jeong-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.431-433
    • /
    • 1997
  • In this paper, we consider the robust pole assignment inside the circular region for linear systems with time-varing uncertainty. The considered uncertainties are the norm bounded uncertainty and the matrix polytopes type uncertainty. Since the considered uncertainties are time-varying, it should remind that the closed loop system be time-varing system. Therefore, we should consider not only the pole assignment but also the stability. We present new conditions that guarantee the robust pole assignment and the robust stability. Finally, we show the usefulness of our results by an example.

  • PDF

Robust $H_{\infty}$ filtering for discrete-time polytopic uncertain systems (이산시간 폴리토프형 불확실성 시스템의 견실 $H_{\infty}$ 필터링)

  • Kim, Jong-Hae;Oh, Do-Chang;Lee, Kap-Rai
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.5
    • /
    • pp.26-33
    • /
    • 2002
  • The design method of robust $H_{\infty}$ filtering for discrete-time uncertain linear systems is investigated in this paper. The uncertain parameters are assumed to be unknown but belonging to known convex compact set of polytope type. The objective is to design a stable robust $H_{\infty}$ filter guaranteeing the asymptotic stability of filtering error dynamics and present an $L_2$ induced norm bound analytically for the modified $H_{\infty}$ performance measure. The sufficient condition for the existence of robust $H_{\infty}$ filter and the filter design method are established by LMI(linear matrix inequality) approach, which can be solved efficiently by convex optimization. The proposed algorithm is checked through an example.

Design of Robust $H_\infty$ Control for Interconnected Systems: A Homotopy Method

  • Chen Ning;Ikeda Masao;Gui Weihua
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 2005
  • This paper considers a robust decentralized $H_\infty$ control problem for uncertain large-scale interconnected systems. The uncertainties are assumed to be time-invariant, norm-bounded, and exist in subsystems. A design method based on the bounded real lemma is developed for a dynamic output feedback controller, which is reduced to a feasibility problem for a nonlinear matrix inequality (NMI). It is proposed to solve the NMI iteratively by the idea of homotopy, where some of the variables are fixed alternately on each iteration to reduce the NMI to a linear matrix inequality (LMI). A decentralized controller for the nominal system is computed first by imposing structural constraints on the coefficient matrices gradually. Then, the decentralized controller is modified again gradually to cope with the uncertainties. A given example shows the efficiency of this method.

Adaptive Control of Uncertain Systems without Knowing Perfect Uncertainty Bounds (불확실한 시스템의적응제어)

  • Hong-Seok Kim;Chong-Ho Choi
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.905-912
    • /
    • 1989
  • An adaptive control scheme is presented for uncertain systems whose uncertainties are upper-bounded by a linear combination of unknown constants and known continuous functions. The state of the closed-loop system is proven to be ultimately bounded. The proposed method modifies the method of Corless and Leitmann in the following two respects. First, the linear region of the saturation function in controller is fixed. Second, the intergration from in parameter estimator is replaced by a low pass filter form. These modifications prevent performance degradation and destabilization of the control system more effectively. The norm of the system states can be made sufficiently small by an appropriate choice of design parameters in the control law. The applicability of the proposed scheme is demonstrated in the position control of a simple pendulum via simulation.

NON-FRAGILE GUARANTEED COST CONTROL OF UNCERTAIN LARGE-SCALE SYSTEMS WITH TIME-VARYING DELAYS

  • Park, Ju-H.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.61-76
    • /
    • 2002
  • The robust non-fragile guaranteed cost control problem is studied in this paper for class of uncertain linear large-scale systems with time-varying delays in subsystem interconnections and given quadratic cost functions. The uncertainty in the system is assumed to be norm-hounded arid time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound far all admissible uncertainties. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost contrellers is 7iven in terms of the feasible solution to a certain LMI. Finally, in order to show the application of the proposed method, a numerical example is included.

Robust H$\infty$ Filtering for discrete-Time Polytopic Uncertain Systems with Multiple Time Delays

  • Kim, Jong-Hae;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.34.3-34
    • /
    • 2001
  • The design method of H$\infty$ filter for discrete-time uncertain linear systems with multiple state delays is investigated. The uncertain parameters are assumed to be unknown but belonging to known convex compact set of polytope type less conservative than norm bounded parameter uncertainty. The modified H$\infty$ performance measure is introduced to consider the initial states values which affect the performance of filter. The objective is to design a stable H$\infty$ filter guaranteeing asymptotic stability of filtering error dynamics and minimizing H$\infty$ norm bound. The sufficient condition for the existence of filter and the filter design method are established by LMI (linear matrix inequality) approach.

  • PDF

Robust H(sup)$\infty$ FIR Sampled-Data Filtering for Uncertain Time-Varying Systems with Lipschitz Nonlinearity

  • Ryu, Hee-Seob;Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.255-261
    • /
    • 2000
  • This paper presents the results of the robust H(sub)$\infty$ FIR filtering for a class of nonlinear continuous time-varying systems subject to real norm-bounded parameter uncertainty and know Lipschitz nonlinearity under sampled measurements. We address the problem of designing filters, using sampled measurements, which guarantee a prescribed H(sub)$\infty$ performance in continuous time-varying context, irrespective of the parameter uncertainty and unknown initial states. The infinite horizon causal H(sub)$\infty$FIR filter are investigated using the finite moving horizon in terms of two Riccati equations with finite discrete jumps.

  • PDF

On Guaranteed Cost Control of Uncertain Neutral Systems (섭동을 갖는 뉴트럴 시스템의 성능보장 안정화에 관하여)

  • Park, Ju-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.3
    • /
    • pp.129-133
    • /
    • 2003
  • In this paper, we consider the robust guaranteed cost control problem for a class of uncertain neutral systems with given quadratic cost functions. The uncertainty is assumed to be norm-bounded and time-varying. The goal in this study is to design the memoryless state feedback controller such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound lot all admissible uncertainty. Some criteria for the existence of such controllers are derived based on the matrix inequality approach combined with the Lyapunov second method. A parameterized characterization of the robust guaranteed cost controllers is given in terms of the feasible solutions to the certain matrix inequalities. A numerical example is given to illustrate the proposed method.

Robust pole placement condition using generalized singular value (일반화된 특이치를 사용한 강인한 극배치 조건)

  • Lee, Jun-Hwa;Gwon, Uk-Hyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.13-19
    • /
    • 1995
  • In this paper, generalized singular value is defined. Using the generalized singular value, robust stability conditions and robust pole placement conditions of structured uncertain systems with star shaped uncertainties are derived. Especially, norm bounded and polytopic uncertainty regions are considered as star shaped uncertainty regions. Linear matrix inequality problems are proposed in order to compute the upper bound of the generalized singular value. The proposed linear matrix inequality problems can be solved by using the convex optimization method.

  • PDF

Robust tracking control for uncertain linear systems using linear matrix inequlities (선형행렬 부등식을 이용한 불확실한 선형시스템에 대한 강인 추적제어기)

  • Lee, Jae-Won;Kwon, Wook-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.289-294
    • /
    • 1998
  • 본 논문에서는 상태행렬과 입력행렬에 시변 불확실성이 있는 선형시스템에 대한 강인 추적 제어기를 제안한다. 본 논문에서 대상으로 하는 불확실성은 block-diagonally structured uncertainty와 norm bounded uncertainty인데 모두 정합 조건을 만족시킬 필요는 없다. 폐루프 시스템이 불확실성하에서 안정할 수 있는 조건을 제시하고 이 조건이 선형행렬 부등식으로 나타낼 수 있음을 보인다. 추적 오차를 줄이고 오차 감소 비율을 증가시킬 수 있는 최적화 방법도 제아한다. 또한 불확실성의 크기가 0으로 줄어들면 추적 오차도 0으로 줄어듬을 보인다.

  • PDF