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Robust A, FIR Sampled-Data Filtering for Uncertain
Time-Varying Systems with Lipschitz Nonlinearity

Hee-Seob Ryu, Kyung-Sang Yoo, and Oh-Kyu Kwon

Abstract: This paper presents the results of the robust H, FIR filtering for a class of nonlinear continuous time-varying systems
subject to real norm-bounded parameter uncertainty and known Lipschitz nonlinearity under sampled measurements. We address the
problem of designing filters, using sampled measurements, which guarantee a prescribed Ho, performance in continuous time-varying
context, irrespective of the parameter uncertainty and unknown initial states. The infinite horizon causal H, FIR filter are investigated

using the finite moving horizon in terms of two Riccati equations with finite discrete jumps.
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I. Introduction

There exists a vast literature on many new analysis tools that
deal with the so-called H, filtering [5]. The Ho filtering prob-
lem is concerned with designing estimators to minimize the Ho
norm of the transfer function from the noise sources to the es-
timator error. However, the conventional H, filters proposed
so far are mainly limited to time-invariant systems. Therefore
they can not be applied to general time-varying systems on the
infinite horizon since one of two Riccati differential equations
required to solve the problem can not be computed on the infi-
nite horizon [4]. Therefore, the H,, FIR filter is investigated for
a class of nonlinear continuous time-varying uncertain systems
under sampled-data measurements on the infinite horizon.

Numerous industrial systems are continuous-time processes
but monitored and measured by digital devices. The classical
method of analyzing these systems is to develop a discrete-time
method, based on the sampling frequency of the measurements.
Digital filtering, smoothing and predicting devices built in this
way tend to fail when the sampling frequency is too low and
the system dynamics are relatively too fast. This is because the
inter-sampling behavior of the system may be overlooked. So,
in the continuous-time system, a filter design is required to pro-
duce a continuous-time estimate of an analogue signal based on
sampled-data measurements. In this situation, the filtering per-
formance measure should be defined directly in terms of the
continuous-time signals, i.e. in the continuous-time context.
We refer to this filtering approach as sampled-data filtering. As
compared with the traditional discrete-time filter designs, the
sampled-data filtering approach has the advantage of taking the
inter-sampled behavior into consideration.

In this paper we consider the Ho, FIR filtering problem for
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a class of uncertain nonlinear continuous time-varying systems
under sampled-data measurements on the infinite horizon by the
finite moving horizon. The class of uncertain systems is de-
scribed by a nonlinear state-space model with real time-varying
norm-bounded parameter uncertainty in the time-varying state
and output matrices. Here, attention is focused on the design
of causal filters, which guarantee a robust stability as well as
a prescribed performance, irrespective of the uncertainty. The
performance measure is defined directly in the continuous time-
varying context and is of an Hy, type. This filtering problem is
referred to as robust Ho, FIR sampled-data filtering. We show
that the robust H., FIR sampled-data filtering problem on the
infinite horizon can be solved in terms of two Riccati equations.
The basic idea of the current paper is to formulate the robust
nonlinear H, filtering problem on the continuous-time mov-
ing horizon [t — T',t] and to adopt the FIR(Finite Impulse Re-
sponse) filter structure. It is noted that this filter will works for
the general time-varying systems under sampled-data measure-
ments, and that this point will be one of the main contributions
of the current paper.
II. Problem formulation and preliminaries

Consider the following class of nonlinear uncertain sampled-

data time-varying systems:

z(t) = [A@t) + DAB)z(t) + [G(t) + AG(L)]
<glz(®)] + B(H)w(t), =(0) = zo (D
z(t) = L{t)z(t) 3]
z4(i) = La(i)2(7) €
y(1) = [C@) + AC()]e (i) + [K (i) + AK(3)]
- k[z(i)] + D(H)v(i), )

where z(t) € R" is the state, 2o is unknown initial state,
w(t) € R? is the process noise which belongs to L2[0, 0o),
y(¢) € R™ is the sampled measurement, v(z) € R is the
measurement noise which belongs to I2(0, 00), 2(t) € RP and
z(1) € R® are linear combinations of state variables to be es-
timated, ¢ is an integer, A(t), B(t), C(i), D(%), G(t), K (i),
L(t) and Lg(i) are known real time-varying bounded matri-
ces of appropriate dimensions with A(t), B(t), G(t) and L(¢)
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being piecewise continuous, and AA(t), AC(z), AG(t) and
AK (i) represent real time-varying parameter uncertainties in
A, C, G and K respectively. These admissible uncertainties
are assumed to be of the form

AA(t)=HFQ®)E, AG(t)=HgFe{t)Ec (5
AC() = HiF3(i)Eqy, AK(i) = HxFx(i)Ek, (6)
where F(t) € R*J, Fy(i) € Ri=>is, Fg(t) € 66 and

Fi (i) € R XK are unknown time-varying matrices satisfy-
ing
FU()F(t) <1, FE(M)Fa(t) <1, Vt O]
F{(i)Fa(d) <1, F{@)Fx(i)<I,¥i , @)

with the elements of F' and F being Lebesgue measureable,
and E, E4, Eg, Ex, H, Hg, Hg and Hg are known real con-
stant bounded matrices of appropriate dimensions with E, Eg,
H and Hc being piecewise continuous. The matrices A(t),
B(t), C(i), D(z), G(t), K(i), L(t) and Lq(3) describe the
nominal model of system (1)-(4). For the sake of notation sim-
plification, in the sequel the dependence on ¢ or 4 for all matrices
will be omitted.

Note that nonlinear models of the form (1)-(4) can be used to
represent many important physical systems. A typical example
is a power system modelled in the form of a single machine-
infinite bus [1]. The parameter uncertainty structure as in (5)-
(8) has been widely used in the problems of robust control and
robust filtering of uncertain systems {2][31[{81{9] and many prac-
tical system possess parameter uncertainties which can be either
exactly modelled, or overbounded by (5)-(6).

The admissible known nonlinearity functions g(-) and k(-)
are assumed to satisfy the following assumptions.

Assumption 1:
(a) g(0) = 0;

(b) There exist known constant matrices W, and W, such

that for any z1 and z» € R",

llg(z1) — glz2)ll < NWy(z1 — z2)l|
le(z1) — k(z2)ll < [[Wilz1 — z2)[l;
(©)[D(z) Hg(z) K(i) H(s)]is of full the row rank for
alli € (0,7).
Assumption 1(c) means that the robust filtering problem is

A

‘non-singular’. We observe that when there is no parameter
uncertainty in the output matrix of system (1)-(4), Assumption
1(c) reduces to D(i)DT (i) > 0, which corresponds to a stan-
dard nonsingularity condition in the H filtering problem for
the nominal system (1)-(4).

In the current paper, the FIR filter is defined by the form

&t T)

f

/:T M{t, 7 T)y(r)dr
2| T) = L5z | T),

where M (t,-;T) is the finite impulse response with the finite
duration T'. The estimation error is defined by

e(i) = z(i) — 2(i | T). 9)

The H,, FIR filter is obtained by constructing its impulse
response from that of the H, filter on the finite moving horizon
[t —T,t].

It is noted that the problem does not need the assumption of
stabilizability or detectability of the system since it is formu-
lated on the finite moving horizon. In the sequel, the bounded
real lemma for linear time-varying systems with finite discrete
jumps which will be used throughout the paper, is reviewed.

Consider the following linear time-varying system with finite

discrete jumps:
(1) : 2(t) = Az(t) + Bw(t), t #£1 (10)
z(i) = Aqe(i”) + Bav(d), Vi€ (0,T) (1D
2(t) = Cz(t) (12)
24(1) = Caz(i™), (13)

where z € R", w € R? and v € R belongs to Lz[0, T
and [5(0,T), respectively, z € RP, zg € R°, and A, A4, B,
B4 and C are known real time-varying bounded matrices with
A, B and C being piecewise continuous. Next, introduce the
following worst-case performance index for (2, ):

1/2

2 2
z|° + (|24
21 + 1|zl s

llwll[?o,T] + “v”?o,T) + 2§ Rzo

J(Z1) = sup

where R = RT > 0 is given weighting matrix for zo and the
suprernum is taken over all (w, v, zo) € L2[0,T] & [2(0,T) &
R™ such that IIwH'[ZO,T] + llollZo,m + zZ Rxo # 0.

We now present a version of the bounded real lemma on fi-
nite horizon for interested filtering problem formulation of the
system (X1).

Lemma 1 [6]: Consider the system (2 ) and lety > 0 be
a given scalar. Then, the following statements are equivalent:

@ J(E,R,T) <7

(b) There exists a bounded matrix function P(¢) = PT (¢) >
0, ¥t € [0, T], such that

—-P=ATP+PA+~72PBBTP+C*C, t #1,

P(T)=0 15)
I —BJP(Et)By > 0 (16)
P(i) = AT P(it)Ag + ATP(i*)Baly*I — BY
PGBy "Bl P(iT)Aq + CJ Cy (17
P(0*) <7°R; (18)

(c) There exists a bounded matrix function Q(t) = Q7 (t) >
0, Vt € [0, 7], such that

—Q>ATQ+QA+~2QBBTQ+C"C, t £14,

Q(T)>0 (19)
y¥*I — B{Q(i*)Ba > 0 20)
Q) > AT Qi) Ay + AT Qi) Baly*I — BY

- QGMB4 ' BI QM) Ad + CZ Ca @1)
Q") <~’R. 22)
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Lemma 2 [8]: Let A, E, F, H and M be real matrices of
appropriate dimensions with M being symmetric. Then,

(2) For any scalar ¢ > 0 and for all matrices F satisfying
FTF <1,

HFE+E"FTH? < lun™ 4 ¢eETE;
€
(b) There exists a matrix P = PT > 0 such that
[A+ HFE|"P[A+ HFE]|+ M <0

for all matrices F satisfying FTF < I, if there exists some
€ > 0 such that the following conditions are satisfied

(i) €?H"PH < I

(i) ATPA+ ATPH[eI-HTPH| 'HTPA+¢ETE +
M <0

(c) For any scalar € > 0 such that e?ETE < I and for all
matrices F satisfying FTF < I,

[A+ HFE|[A+HFE)" < AI—cETE)" AT + 1HHT.
€

III. Robust H, Fir sampled-data filters with

known lipschitz nonlinearity

In this section, the robust H, FIR filtering problem for the
system (1)-(4) is considered.

First, a related performance analysis problem for a class of
uncertain systems with finite discrete jumps is considered. The
motivation for this is that, as will be shown later, the robust
performance analysis for the estimation error associated with
(1)-(4) and a linear sampled-data filter can be recast into the
robust performance analysis of an uncertain system with finite
discrete jumps of the form

(2) : () = [A(}) + DAWDJ() + [G(2) + AG(H)
glz(O] + Btyw(t), t#i (23)
2() = [Aa(i) + AALD]o(™) + [K()
+ AK(3))k[z(27)] + Ba(z)v(s) (24)
2(t) = () 5)
24(1) = Ca(d)z(3), (26)

where z(t) € R" is the state, w(t) € R? and v(3) € R¢
are the continuous and discrete inputs, respectively, z(t) € R"
and z¢(7) € R° are continuous and discrete outputs, respec-
tively, A(t), Aq(2), B(t), Ba(t), C(t), Ca(i), G(¢) and K (i)
are known real time-varying bounded matrices with A(t), B(t),
C(t) and G(¢) being piecewise continuous, g(-) : * — R"s
and k(-) : R™ — R™* are known Lipschitz nonlinear func-
tions satisfying Assumption 1., and A A4(z) is of the form

AAy = HyFaEyg, 27

where Eg1 € R%*" and Hyy € R™*® are known real time-
varying bounded matrices and Fiy; € R**? is an unknown ma-
trix function satisfying

FLFsy <I, ¥i=0,1,2,.. (28)

The robust performance analysis problem for the system
(23)-(26), is as follows:

Given a scalar y > 0, find condition which guarantee that

{l2ll* +1lzal*} < 2 {lwlfe-rg + WllE-r0} 29)

Jfor all non-zero (w,v, o) € L2[0, 00) & 12(0,00) & R™ and
for all admissible uncertainties, where R = RT > 0 is a given
weighting matrix for xo.

In such a situation, the system (23)-(26) is said to have robust
H performance <y over the moving horizon [t — T, ¢]. In or-
der to solve the above robust performance analysis problem, the
following system associated with (23)-(26) is considered.

(Z8) : &(t) = Az(t) + [Ber,e2) ~7'Blus(t) (30)
z(i) = Aax(i”) + [Bales,ea) v 'Ba)o(i) (31)
50) = [C"(er) CTITa(t) 32
Za(i) = [Cd (es) CI]"=(d), (33)

where z(t) € R is the state, w(t) € RPTT"¢ and 4(t) €
RITIFK are the continuous and discrete inputs, respectively,
%€ R and 23 € R°T are the continuous and discrete out-
puts, respectively, v > 0 is a desired ‘Hy, performance’ for
system (23)-(26), A, A4, B, By, C and C; are the same as in
(23)~(26), and B(e1, €2), By(es, €a), C(e1) and Cyes) satisty
the following relations

_ _ 1 1
B(e1,e2)T B(e1,e2) = E—zHHT + 6—2HGH§
1 2

+G(I - EEE:)'GT (34)

Bu(es,es) " Ba(es, ea) = glnglHdTl + éHKH}Q
+K(I — ExEx) KT (35)
C(e1)"Cler) =1 ET E1 + W)W, (36)
Ciles)"Cales) = 3EnEn +WiWe.  (37)

Inthe above, E, E¢, Ex, Ea1, G, H, K, Hg, Hx and Hy,
are the same as in (23)-(26), W, and W}, are as in (9), and €,
€2, €3 and €4 are positive scaling parameters to be chosen, with
I - EZEz > 0andI — 2ELEx > 0.

The first result deals with the strict bounded realness of (23)-
(26) over the finite moving horizon [t — T, ]. For simplicity in
notation, we will regard the finite moving horizon [t — T, ¢] as
[0, 7).

Theorem 1: Given a scalar v > 0, the system (23)-(26)
has a robust Ho, performance « over the finite moving horizon
[0, T if there exist positive scalars €1, €2, €3 and €4 such that
2EEEc < I, 2EX Ex < I and the system (30)-(33) satisfies
J(2%,7v*R,T) < 1.

Proof: First, by Lemma 1, J(£%,7%R,T) < 1 implies that
there exists a matrix function Q(¢) = Q7 (¢) > 0,Vt € [0,T],
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such that

-Q>ATQ+ QA+ QBBTQ + C(e1)"Cler) + C7C,
t#4 Q(T)=0 (38)
I-BiQGE")Bs; >0 (39)
ATQGM)Aa — QG) + ATQGT)Ball — BIQ(*)Ba]™
“BIQG)Ag + Cu(es) Cales) +CTCy < 0 (40)
Q(0) < ¥’R, (41)

where
B = [3(61?52) 7_1B]a Bd = [Bd(63a64) ’7—1Bd]'

Next, in view of Lemma 2 (a) and (c), together with equalities
(34) and (36), it results from Eq. (38) that

Q+(A+AATQ+ QA+ AA)+~72QBBTQ
+Q(G+AG)G+AG)Q+CTC+WIW, <0,
t# 14 Q(T) =0. 42)

Now, using the matrix inversion lemma, together with equal-
ities (35) and (37), (40) leads to

QG) > AJ[Q (") ~ v *BuB], — €3 *Hu Hi| "t Ay
+ &EELEqn + WEW, + T Cy, 43)

where ByiB], = ByBl + v*K(I — e4aELEx)'KT +
22 Hy HE. Also, note that from (39), it follows that
€4

I- 7-ZB£Q(i+)Bd1 > 0. “@4)

By denoting X! = Q~!(i*) — v 2By B, (43) can be
rewritten as

Q() > AT XAy + AT X Hyi[e3] — HL X Hyy) ™}
"HJZXAg + E2ELEgy + WIW, + CTCy. (45)

First, by Lemma 2 (b), (45) leads to
Q@) > (Aa + AANT X (Aa + AAg) + WEW, + CTCy.
Next, by Lemma 2 (c), we have that
2
BuBl, = BBY + v*K(I -~ SELEx)KT + Z—2HKH£
4

ByB] + (K + AK)(K + AK)T (46)
BBl @7

v

where By = [Ba (K + AK)].
From (44) and (47), we have that

I -~ BLQG")Ba > 0. 48)
Hence

Q@) > (Aa+ AA)T(Q7(iY) — " Ba2BH) ™
(Ag + DAY + WEWL + CTCy.

It then follows from the matrix inversion lemma that

(Ad + DANTQUT)(Ad + Ada) — Qi) + (Ag + AAL)”
-Q(T)Baaly’I = BLQ(i%) Bas] ' BLQ(T)
(Ag+ DA+ WEWL +CT ey <0, (49)
where By2 B}, = ByBT +7*(K + AK)(K + AK)T. Now,

in view of (23), (25) and (42), it is easily verified that for any
T € (i, + 1),

[, 36" = [T M@wd+ ol - 212
i+ +

i

= 18117 = lllt? = llg@@)iZ — 1W,all?, (50)

where M (t) denotes the left-hand side of (42), Ax = A +
HFE,Gan =G+ HgFgEg and || - || means || - ||; ) and

8(t) = Y[w(t) — v "B Qz(t)]
p(t) = glz(t)] - GAQz(t).

Next, considering (24) and (26) and by completing the
squares, we have that

2" ()R (i) — 2T (i7)Q()=(i7)
2" (7 )Ma(D)z(i7) = l|za(@)))®

+ 7l @1 ~ @I

+ k=GO ~ W (@)1, 5D

=T Qu|it

where M () stands for the left-hand side of (49) and

r(i) = [y’T = BQ(i)Bar]/* {8(3) — [v°I - BL
-Q(iM)Bas] ' BLQGT) (A + AAg)z(i7)}

9@ = @) 7 RGN

By combining (50) and (51) over all possible ¢ in (0, T") and

considering that M (t) < 0,Vt # 4, Ma() < 0,Vi € (0,T),
we obtain that

()T QW) 1§ < Yllwll® + lwl*] = [lI211% + [I2all]
+|lg(2)|I* — |Wyz|?
+ lk(@)I® - || Wiz, (52)

By taking into account Assumption 1 and the fact that
Q(T) = 0 and Q(0) < ¥R, (52) implies that

Izl® + Nzall® < *[lwl® + )i + =3 Rao),

whenever ||wl||® + ||v]|® + & Rzo # 0 for all admissible un-
certainties, which completes the proof. |
Now, a solution to the robust H, FIR filtering problem for
system (1)-(4) over a moving horizon [0, T} is provided.
Corollary 1: Consider the system (1)-(4) satisfying As-
sumption 1. Given a scalar v > 0 and an initial state weighting
matrix R = RT > 0, the robust Hoo FIR sampled-data filter-
ing problem over a moving horizon [0, T] is solvable if there
exist positive scalars €1, €2, €3 and €4 such that e%EgEG <1,
2 EREx < I and the following conditions are satisfied:
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(a) There exists a bounded solution P(¢) = PT(¢) > 0 over
the moving horizon [0, T} to the Riccati differential equation
with jumps

P(t)+ ATP(t) + P(t)A+~7*P(t)[BB” + BBT]P(t)
+EETE+WIW, =0, t#i (53)
P(i) = P(i") + &2E} Eqy + Wi Wi, (54)

with terminal condition P(T) = 0 and such that P(07) <
~%R, where

B:[ 2H ~G(I - §EEEG)™? gz-HG]. (55)

(b) There exists a bounded solution S(¢) over the moving
horizon [0, T'] to the Riccati differential equation with jumps

S(t) = AS(t) + S@®)AT + 4 2S(t)LTLS(t) + BB
+ BBT, (56)
S@E) =[ST'") —y P LiLa + CTVTICTY 57

with initial condition $(0) = [R — vy~ 2P(0)]" ', where

LTL=L"L+WIW,, LILi=LYLs+WIWi,

A(t)= A+ (v"?BBT + ;2 HHT)P(t) (58)
.
V = A
0 DDT ]

D= [D 2H, yK(I - EELEx)™? gZHK] . (59)

Moreover, if conditions (a) and (b) are satisfied, a suitable
filter is given by

&(t) = A2(t) + Ggla(t)] (60)
&) = 2(67) + SHCTV H{y@) — C2(7)

— Kk[E(i7)]} (61)

3(t) = La(t) (62)

24 = Lqi(4). (63)

Proof: First, associated with (1)-(4) and (60)-(63), we define
Z =z — &. Since z(z) = z(1~), from (1)-(4) and (60)-(63), we
have that

5(t) = [A+ AAJE(E) + [AA - AAJz(D)
+ Bw(t) + [G + AGg(z) — Gg(Z)
(i) = AgB(i") + By A Co(i™) + BaK (Kz(i™)]
— k[£(i7)]) + Ba A Kklz(:7)] + BygDo{i),

where

Ag=1-8ECTVIC, By = -SHCTV,
AA(t) = (W 2BBT + 2 HHT)P(3).

Hence, we have the following estimation error dynamics for

the estimator error z — 2 and z4 — %4 is as follows

7(t) = [Ae + H.F(t)Ec]n(t) + Bow(t)

+[Ge + Hge Fa Egelge(x, ) (64)
n(i) = [Age + Hye FaEgen(i™ ) + Baev(s)

+ [Ke + Hie F Egelke (2, Te) (65)
z(t) — 2(t) = Len(?) (66)
za(4) — 2a(i) = Laen(d), (67)

where n = [z #7]7 and

A, = A 0 Ay = I 0 ,
—-ANA. A+ AA 0 Ag

B, = B ) By = 0 ’ Hpe = 0 ’
B BdD BdHK

H. [ H
Hi=| ° | He=| |, 5= ,
ByH, Hg H

E.=[E 0], Ba=[Es 0], Bpe = [Ec 0],
Eye = [EK O]a Le = [0 Le]a Lge = [0 Ld];

G 0 0 0 |
Ge:[o G]’Kez[o ByK |
_ g(z)
9ol e) = [ 9() - 9(a2) ] !

CEC) ] .
[(i)] = klae (i7)]

Note that by Assumption 1,

ke(fl;,me) = [ k

llge (2, ze)ll < ([Wonll, ¥n € R*"

ke (2, z)I| < |Wenll, ¥y € R*", (68)
where
. W, 0 . Wi 0
W, = ¢ , Wi = . 69
9 [ 0w, ] k l 0 W, ] (69

From Theorem 3.1 in [71, condition (b) is necessary and suffi-
cient for the solvability of the moving horizon Ho, FIR filtering
problem for the linear system with sampled measurements

£t) = Ag(t) + (B Blu(t) (70)
9(i) = C&@) + Di(s) an
z(t) = LE(t) (12)
2ea(i) = Lat(i), 73)

where £ € R" is the state, £ is an unknown initial state,
W € RPTIFG s the process noise, (i) € R™ is the sampled
measurement, 9(i) € RIT*T™K is the measurement noise,
ze € R” and z.q4 € R° are linear combinations of the state vari-
ables to be estimated, and the filtering performance measure is
given by

1/2

| )

sup{ llze = ZeI” + l|zea — Zeall®
1@l 7y + 10115,y + &5 [R — ¥~ 2P(0)]€o]
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where 2. and 2.4 are the estimates of 2. and z.4, respectively.
In the above, the supremum is taken over all (u,%,&) €
L5[0, 00) & 12(0,00) & R™ such that “ﬁ’“[Qo,T] + ”ﬁ”%O,T) +
ET[R—~"2P(0)]¢o # 0. Also, observe that suitable estimates

Ze and 2.4 are given by

(Ser) : €(8) = ALE), t#4 £0)=0
&) = £G7) + SOCTV () - CéG))
z(t) = LE®)
%ea(i) = La€(i).

Now, letting §~ =& é, it follows from the system (1) and
(70)-(73) that

£() = Aé)+ (B Blo(), £0)=6
£(i) = A4é(i") + BaDi(i)
ze(t) — 2.(t) = Lé(t)
Zed(3) — 2ea(i) = La€(d).

Since the above system satisfies (74) by Lemma 1, this im-
plies that there exists a bounded matrix Z(t) = ZT(¢) > 0,
satisfying the following Riccati differential equation with jumps

Z@)+ ATZ(t) + Z@)A+~72Z(#)[BBT + BBT]
ZW+LTL=0, t#4 Z(T)=0 (75)
v I — DB zG)BsD >0, i€ (0,T) (76)
Z(i) = AT Z(i")Aa + AT Z(:Y)B4D[y*1 - DT
BT Z(it)BaD| ' DT BY Z(:*) A4 + L} La )
Z(0) < v*R — P(0). (78)

Next, let

P{#) 0
0 zZ@) |’

X(t) = [

where P(t) and Z(t) are the non-negative definite solution
of (53) and (54) and (75)-(78), respectively. Note that since
Z(0) < 4%R — P(0), there exists a sufficiently small scalar
4 > 0 such that

P(0%) + 461 0

X(O) < Xo= 0 V2R - P(0%) - 61

It is straightforward to verify that there exists a matrix
X(t) = XT(t) > 0, Vt € [0, T] satisfying the following Ric-
cati differential equation with jumps

X(t)+ ATX(#) + X(£)Ae + X(#)B. BT X (1)

+CFc. =0, t#4i X(T)=0 79
I-BLX(@M)Bs >0, i€(0,T) (80)
X(i) = ALX (%) A + ALX (%) Bac[l - B,

- X(i%)Bae] " BL X (iF) Ade + Cie Cae, @81

X(0) < Xo, (82)

where
Be=[B. 7 'Bc, Bue=1[Ba 7 'Bul,
C’e = [ée Le]T, C‘da = [éde Lde]T,

and 4 being a positive number with B., B4, C. and C4. such
that

B.BY = Ge(I — 3EL.Es.) 'GT
1 1 ,
+ 6—2H6H5T + e—zngHgTe (83)
1 2
BuBL = K.(I - €EL Ere) 'K

1 1
+ S HyHp, + S HieHL, (84
€3 €3

CIC. = EETE. + W W, (85)
Ci.Cae = €3Es, Ege + W Wi, (86)

where Wg and Wk are as in (69).
By Lemma 1, (79)-(82) implies that the system as below

(S3) 1 £(t) = Ac&(t) + Beio(t) 87
£(i) = Ageb(i™) + Baed (i) (88)
ze(t) = Ce£(t) (89)
2e(i) = Cacl(3) (90)

satisfies J(Z3,v2, Xo, T) < I, where Xo = v~ 2X,. Finally,
by considering the system (64)-(67) and (87)-(90), and the fact
that the initial state of (64) satisfies n” (0)Xon(0) = z3 Rxo,
we conclude that the estimation error dynamics (64)-(67) satisfy

~ ~ 2 2 - 2
{llz = 211” + llza — 241’} < ¥*{llwlifo.zy + lvllo,)
+ o8 Rao} (91)

for all non-zero (w, v, zo) € L2[0, 00) @ 12(0,00) & R™ and
for all admissible uncertainties. ]

IV. Conclusions

In this paper, the problem of robust H., FIR filtering problem
under sampled data system with known Lipschitz nonlinearity is
addressed. Attention is focused on the simultaneous estimation
of a continuous and discrete time-varying signal using a perfor-
mance measure which involves a mixed L2 /l> norm of the es-
timation error for the continuous and discrete time-varying sig-
nals. The causal filters on the moving horizon, which provide a
guaranteed H, performance, is developed. But the strict per-
formance analysis and computation burden of the robust H,
FIR proposed requires further research.
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