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Robust Tracking Control for Uncertain
Linear Systems using Linear Matrix Ineqaulities
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1. Introduction conditions can be expressed as Linear Matrix
There are a lot of results on designing robust Inequalities (LMI) for which a lot of efficient
stabilizing controllers, which stabilize linear systems algorithms have been developed. We also show that
with parametric uncertainties [6][8][91[10]. But there the bound of the tracking error can be decreased or
are only a few results on designing robust tracking the error decaying rate can be increased by solving a
controllers, which make the parametric uncertain kind of LMI problem ie., a Generalized Eigenvalue
systems track the reference signal and simultaneously Problem (GEVP). This optimization problem can be
guarantee the closed loop stability in the presence of solved via a lot of developed algorithms including the
all allowable uncertainties. Parametric uncertainties interior-point methods [11[7]. We also show that the
may be classified into two cases. One is the case that tracking error exponentially decays to 0, when the
the uncertain system should satisfy the matching norm bounds of uncertainties exponentially decay. In
condition, and the other is the case that the uncertain Section 11, we define an error dynamic system for the
system need not satisfy the matching condition. In the uncertain system and formulate the robust tracking
robust stabilization problems, a lot of results on the problem. In Section I, we present main results
uncertain systems without the matching condition have including robust tracking conditions for block-
been developed [6][8][9)[10]. In the robust tracking diagonally structured uncertain systems and some
problems, however, the results only on the uncertain relevant LMI optimization problems. Finally, conclu-
system with the matching condition have been sions are given in Section IV.
developed [4][11][12]. Hence, we will consider a robust
tracking control problem for the uncertain systems II. Problem statements
without the matching condition. In this paper, we We consider the following linear time-invariant
consider the block-diagonally structured, norm- system with time-varying uncertainties :
bounded, and time-varying uncertainties, which need .
not satisfy the matching condition. These types of x(1) i (A+4A4(D)x(D) +(B+AB()u(f) (n
o : ) WD) = Cx(d
uncertainties have been exploited in the recent
researches on the robust stabilization problems. We where x=R”" is the state, uR” the control and
propose conditions such that the tracking error is yER' the output. A€ R™”* BeR"™ ™ and CeR"™"
ultimately bounded and the closed loop stability is are constant matrices. JA(HER™ " and AB(HeR ™™
guaranteed for all allowable uncertainties. In the are time-varying uncertainties in the state matrix and
proposed conditions, there are some free parameters to the input matrix, respectively. The uncertainty pair
allow flexibility in determining bound and decaying (4A(DH,4B(¥)) belong to the prescribed sets that will
rate of the tracking error. We show that the proposed be specified later. In this paper, we are interested in
the state feedback and feedforward controller which
Hedat 1997, 8. 12, FHYR 1 1998. 5. 10, has the following form :
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where F, is a constant feedback gain, F, is a

constant feedforward gain and y,=R‘ is a given
constant reference signal. The objective is to construct
a robust tracking controller (2) which makes the

tracking error |y—. bounded and simultaneously

guarantees the quadratic stability of the closed loop
system for all uncertainties which belong to the
prescribed sets.

Now, we modify the uncertain system (1) in order
to construct a tracking controller based on the idea in

[3]. Assume that /<m and rank[‘é 6)] =n+/

Let an equilibrium state x, and a control w, satisfy

0 = Ax.t+ Bu.
Ve = Cx:_

and the solution be of the form

X« :@[0]= @11 @12][0]' (3
[u*] Vs Doy Dpf| s )

If /{m, then one solution may be obtained by

o=37(537 ", (4)

zz[fg 65] ®)

and if /=m, then ®=23 ! Now let us define new
variables as

where

X = X Xs,
u - u_u*,
Yy = Y s

Then the system (1) may be rewritten as

) = [A+ AWM XD +[B+ABOVuH+uw() (g
W) = Cx(d)
where
ult) = AA(Dx.+ AB(Hu.. )

The output of the system (6) is the tracking error
and w(#) can be regarded as time-varying distur-
bances generated by time-varying uncertainties and
tracking commands. Now the tracking problem becomes
the problem of finding a state feedback controller
u=Fx to bound y in the presence of allowable
uncertainties and the disturbance corresponding to the
uncertainties. If we find such a feedback gain F, then
the robust tracking controller will be

u = Flx—x.)+ u. = Fx+[—-F Im][z']

= Fx+[—F I, @[?]y. ®
I

Following the notation in (2), the feedback gain and
the feedforward gain will be as follows :
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F| (feedbackgain) = F
Fy (feedforwardgain)=[ — F 1,] d)[? .
1

II1. Main results

In this section, we propose conditions under which
the tracking error is bounded and the quadratic
stability of the closed loop system is guaranteed for
all uncertainties which belong to the prescribed sets.
We consider a block-diagonally structured, norm-
bounded, and time-varying uncertainty set. We show
that the proposed conditions can be expressed as
LMlIs. We also show that the bound of tracking error
can be minimized or error decaying rate can be
maximized via solving the GEVP subject to the LMIs,
respectively. Before stating the main results, we
introduce some notations and the definition of
quadratic stability which is often used in the robust
stabilization problems. A pin(X) and A L (X) denote
the minimum and maximum eigenvalue of the matrix
X, respectively. ||X}| denotes the 2-norm of the
matrix X . |» denotes the Euclidian norm of the
vector x. A matrix inequality X> Y denotes that
X—Y is positive definite.

Definition 1 [6] : The uncertain system (1) is said to
be quadratically stable with a linear state feedback
control u(#) = Fx(, if there exist a positive definite
symmetric matrix P and a constant &>( such that,
for any allowable uncertainty pair (4A(H,4B(?), the
V(x(8) =

derivative of the Lyapunov functional
(O TPx(§) satisfies

V< — elx(P)2. 9)

The following lemma will be used to prove the
guaranteed bound of the tracking error under the
robust tracking conditions that will be proposed in the
following theorem.

Lemma 1 : Let a functional be V(H=zT(H) Pz .
If there exist a(>0),b= R such that

V< —aW(+b, V =g (10)
then
3 b
lz(t)ls[ o for Vit)<—5 (1)
1
(o+(V(t)—ple ") 2 forV(to)>—2
where

o= (A ‘“‘“(P)—fl’). (12)
Proof : (10) implies
<L + (V) —Lye . gy

Since

A min(P2(D1*<2TOP2(9), (14)
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l2(5)I* < A‘“‘"(P)[—f§+<V(to)——g)e*“""“]
= (p+(Vtp)—p)e ™).

This completes the proof. [ |

Now, we consider the robust tracking problem for
the block-diagonally structured uncertainties. Let us
consider the following uncertainty set :

AdA(D = D, FHE = ;DA,wi(t)EA,
AB() = Dy DEa= 2.D 500 s,
and the uncertainty set is given by
Ui = (AW BOXNTDI<y o, 1040175, (15
YV 2ty i=1,2,-,7 and j=1,2,,5s},

where ¥ and @ are norm bounded uncertainties with
the following structures :

0 - 0 ® 0 - 0
p=|0 0 e=|0 & U g
0 0 - &, 0 0 - O,
where Dy, Dy E4, and Ep are known matrices with
appropriate dimensions. As shown in (15), the
uncertainty pair in U, need not satisfy the matching

condition. Without loss of generality, we assume that
Yo, = Y5 =1. Before we state the next theorem, let

us introduce the following notations :

Di= 3w 'DaDa’, Ba= 2w EaEs, (D)

D-\B—T—- IZ] ViilDB, DB,T; E‘;: gViEBITEB,, (18)

where u,’s and v,’s are some positive numbers.

Now we propose a robust tracking condition for the
system (1) with the uncertainties (15) using the
control with the type (2).

Theorem 1 : Assume that there exist a matrix F, a
positive definite matrix P and a positive number
€120 which satisfy the following inequality:

(A+BF)"P+ P(A+ BF)+ e P+2P( D+ 19)
Dp)P+ E + FT EGF <0,

for some positive g,’s and v,'s. Then with the state

feedback controller u=F }, the tracking error is
bounded as follows :

M
| Wol< 9 for dy=-c" (20)
—e =t 4 M
(8 + (8, — &%° )2 for 60>?1
where
1
5= @ 'm(pHHy»
€1

6‘0 = ;C(to)TP}(to)
M = (I EA® oll* + 11 EGlI @ 1l P13l

Proof : Define a Lyapunov functional V(x(#) as
follows :

V(D) = x (HP x(P). (21)

Using the notation A= A+ BF and, 1= 4A+4BF
the corresponding Lyapunov derivative is given by

V(x(®) = xT(A+ D P+PA+DIZ (o
+w Px+ x Pw
Using the fact that

XY+ YTX<pX'X + % YTy, (23)

for any matrices X and Y and for any 800, we
obtain

(A+ DTP+P(A+ D<ATP+ PA+ FTB'P+ PBF
+ DU ELE 4+ P07 D D)P

+ FI(SWEGE 5)F+ P 3D DL)P,
and
wPi+ 2T Pw= (2D A UE sxut+ 2D 5 O.F pulP
+ XTP(ED AVE axs+ 2D pO.E pus)
<P ELE all + 2730, D 4 DT )P
+lul NSV ESE 5|+ TS, 'D 5 D)PE.
Hence (22) becomes,

V < x[(A+BF)'P+PA+BF)+2X D+ Dp)P
+ Ea+ FTERF] x+ k¥ Eall + e ERL

Then, if (19) holds,

V< —e 2 P+ i EAll 4l W ERl. (20

Lemma 1 and (24) imply (20). [ |
From the solutions which satisfy the condition in

Theorem 1, we can obtain the robust tracking

controller with the type (2) using the relation (8).

In [11], a method to guarantee the asymptotic
tracking property for uncertain systems was proposed,
while a method to guarantee the tracking error bound
for uncertain systmes is proposed in Theorem 1[11].
employed a dynamic feedback control in which on-line
computation is needed, and assumed time-invariant
uncertainties which should satisfy the matching
condition. On the other hand, in this paper, we employ
a constant feedback and constant feedforward control
in which only off-line computation is needed, and
assumed time-varying uncertainties which need not
satisfy the matching condition.

If we use the control gain F satisfying the
inequality condition (19), the quadratic stability of the
closed loop system with the uncertainties (15) will be
guaranteed. To investigate the closed loop stability of
the robust tracking controller proposed in Theorem 1,
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we have only to consider the state feedback closed
loop system :

2 =(A+ BF+ A+ ABF)x(?). (25)

Theorem 2 : Assume the hypotheses of Theorem 1.
Then the closed loop system (25) is quadratically
stable with the state feedback controller u(#) = Fx(?
for all uncertainties (4A(H,4B(H)e U,

Proof : Define a Lyapunov functional as :

L(x(D): =x"()Px(D). (26)
Then
L < x"(0l(A+BF)'P+ (A+BF)+ E,
+ FTEgF+2P( Dy + at D) Plx( D) @7
< —ex (D Px(P
< — 6 m (P (D%
Hence the closed loop system (25) is quadratically stable
with the state feedback controller #(#) = Fx(?). [ |
The following corollary shows that the tracking
error with the control in Theorem 1 decays to zero in

the steady state if there are no uncertainties.
Corollary 1 : Assume that there exist a matrix F', a
positive definite matrix P and a positive number

€120 which satisfy the following inequality:

(A+ BF) P+ P(A+ BF) + £, P<0.
Then it holds that

| W DI< ¥ t) TPHt)e "V =24, (28

when 4A=0 and 4B=0.
Proof : In this case, M=0 . Hence the proof is
trivial from Lemma 1. |
Now, we show that the robust tracking condition
(19) is equivalent to an LMI. In Theorem 1, the

design parameter &, determines the decaying rate of
the tracking error, and & means the guaranteed error
bound. If we prescribe &) to guarantee error decaying

rate, we can convert the condition (19) to the
following LMI problem :

2/(X,7,¢e)<0

where
X, XY
.QI(X, Y,61)= X Zl 0 N (29)
Y 0 2
=AX+XAT+ e X+BY+Y'B'+2(D,+ Dp),
X=P', Y=FP"', Z;=— E, !, and Z,=— E5

If there exist X and Y satisfying the LMI problem
(29), then the robust tracking controller becomes

w(d=YX %(D+[-YX ' I,] ¢[?]y..
/,

Now we face two kinds of optimization problems. One
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is to minimize the error bound and the other is to
maximize the error decaying rate £,. In Theorem 1, if

we find a solution to minimize Aq, | (P), ie
Amax (P71, we can minimize the error bound 4.
Similarly, if we find a solution to maximize &;, we
can maximize the error decaying rate. The solutions of
both problems can be found by solving the following
GEVPs subject to the corresponding IL.MIs. The tracking
error bound can be decreased by the following problem :

Minimize
XY A max (XD (30)
subject to
(X, 7Y, &)<0, 31

where &; is a given positive number.

The error decaying rate can be increased by the
following problem :
Maximize €1
XY (32)
subject to

21(X, Y, e)<0

These types of optimization problems belong to
GEVPs. Recently, many algorithms including interior-
point methods and ellipsoid algorithms for GEVPs
have been developed. For details, see [1][2][7] and
references therein. Now, we comment on the
offset-free tracking property of the proposed controller
for the uncertainties which decay exponentially. Let us
consider the following unstructured uncertainty set :

Up= {(AA(D, JBOYIT(DII<e ™ N10li<e ™, 33
YV otz i=1,2,--,r and j=1,2, -, s},

where y, and 7y; may be known or not. We observe
that U,C U, with y,=7,=1. The following
lemma will be used to show the offset-free tracking
property for the proposed controller under the above
uncertainties.

Lemma 2 : Under the hypothesis of Lemma 1, suppose
that & is time varying and exponentially decaying, i.e.

V< —aV()+ (D) and b(D<ke ™' then

1
— kit
ole

k - kety
for a>k, and W( to)srlkg P
1
,k;vl+ ( V( to) — pe 7/9_,/)6 —a(t- /“)) 2 (34)

= kely
e
2

l2(8)< (oe i
for adk, and V()> a_lk

1
@7 (P Ve ™™+ k(= t)e ™) Por a= ky

- -L—t)
(Wt —pe *9e 2"

for a<k
where

10:( Amin 71(P) a

Proof : In this case, V(¢ will be

b
a2

—a(t— ¢ . _
V(< WV(te “ '+ [o(de Par  3)
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The rest of the proof is similar to that of Lemma 1.1

In the above lemma, we observe that the state z(9
exponentially decays, which will be used to show that
the tracking error also exponentially decays in the
following corollary.

Corollary 2 : Assume the hypotheses of Theorem 1.
Then with the controller %= F x, the tracking error
(D) exponentially decays to 0 as ! goes to ©o.

Proof : Using the inequalities in the proof of
Theorem 1, we obtain :

V< — e, 2P+ xl3 Ealle ™™ + a2l Eglle ™

Hence, from Lemma 2, we conclude that the tracking
error exponentially decays to 0. [ ]

IV. Conclusion

In this paper, we consider the robust tracking
control problem for parametric uncertain systems
which need not satisfy the matching condition. It is
noted that that uncertain systems must satisfy the
matching conditions in the existing robust tracking
methods for parametric uncertain systems. We
proposed the robust tracking controllers for linear
systems with block-diagonally structured, norm-
bounded, and time-varying uncertainties in both the
state and the input matrix. These types of
uncertainties have been widely investigated in the
robust stabilization methods. Even though the proposed
robust tracking controller adopts constant feedback
gain and constant feedforward gain, it guarantees the
tracking error bound and the quadratic stability of the
closed loop for the above time-varying uncertainties. If
the norm bounds of uncertainties exponentially decay,
the proposed controller guarantees the offset-free
tracking property. We showed that the proposed
tracking controller can be obtained by solving LMls.
In the proposed controller, there are some free
parameters which can be utilized in determining the
bound and the decaying rate of the tracking error. By
involving GEVPs which can be solved by recently
developed algorithms, we showed that the error
bound can be minimized or the error decaying rate
can be maximized.

A subject of*future researches would be to extend
the proposed state feedback controllers to the output
feedback controllers which would be easily extended
using the method in [5]. Another subject would be to
design a robust tracking controller for the cases of

time-varying reference signals and model-following
problems. It is expected that a slight modification of
the methods proposed in this paper will make it
possible to guarantee the tracking error bound and the
closed loop stability for both cases.
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