• Title/Summary/Keyword: nonuniform grid

Search Result 9, Processing Time 0.023 seconds

Effect of Nonuniform Vertical Grid on the Accuracy of Two-Dimensional Transport Model

  • Lee, Chung-Hui;Cheong, Hyeong-Bin;Kim, Hyun-Ju;Kang, Hyun-Gyu
    • Journal of the Korean earth science society
    • /
    • v.39 no.4
    • /
    • pp.317-326
    • /
    • 2018
  • Effect of the nonuniform grid on the two-dimensional transport equation was investigated in terms of theoretical analysis and finite difference method (FDM). The nonuniform grid having a typical structure of the numerical weather forecast model was incorporated in the vertical direction, while the uniform grid was used in the zonal direction. The staggered and non-staggered grid were placed in the vertical and zonal direction, respectively. Time stepping was performed with the third-order Runge Kutta scheme. An error analysis of the spatial discretization on the nonuniform grid was carried out, which indicated that the combined effect of the nonuniform grid and advection velocity produced either numerical diffusion or numerical adverse-diffusion. An analytic function is used for the quantitative evaluation of the errors associated with the discretized transport equation. Numerical experiments with the non-uniformity of vertical grid were found to support the analysis.

A Simple Volume Tracking Method For Compressible Two-Phase Flow

  • SHYUE KEH-MING
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.237-241
    • /
    • 2001
  • Our goal is to present a simple volume-of-fluid type interface-tracking algorithm to compressible two-phase flow in two space dimensions. The algorithm uses a uniform underlying Cartesian grid with some cells cut by the tracked interfaces into two subcells. A volume-moving procedure that consists of two basic steps: (1) the update of volume fractions in each grid cell at the end of the time step, and (2) the reconstruction of interfaces from discrete set of volume fractions, is employed to follow the dynamical behavior of the interface motion. As in the previous work with a surface-tracking procedure for general front tracking (LeVeque & Shyue 1995, 1996), a high resolution finite volume method is then applied on the resulting slightly nonuniform grid to update all the cell values, while the stability of the method is maintained by using a large time step wave propagation approach even in the presence of small cells and the use of a time step with respect to the uniform grid cells. A sample preliminary numerical result for an underwater explosion problem is shown to demonstrate the feasibility of the algorithm for practical problems.

  • PDF

Eulerian-Lagrangian Modeling of One-Dimensional Dispersion Equation in Nonuniform Flow (부등류조건에서 종확산방정식의 Eulerian-Lagrangian 모형)

  • 김대근;서일원
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.907-914
    • /
    • 2002
  • Various Eulerian-Lagrangian models for the one-dimensional longitudinal dispersion equation in nonuniform flow were studied comparatively. In the models studied, the transport equation was decoupled into two component parts by the operator-splitting approach; one part is governing advection and the other is governing dispersion. The advection equation has been solved by using the method of characteristics following fluid particles along the characteristic line and the results were interpolated onto an Eulerian grid on which the dispersion equation was solved by Crank-Nicholson type finite difference method. In the solution of the advection equation, Lagrange fifth, cubic spline, Hermite third and fifth interpolating polynomials were tested by numerical experiment and theoretical error analysis. Among these, Hermite interpolating polynomials are generally superior to Lagrange and cubic spline interpolating polynomials in reducing both dissipation and dispersion errors.

A Study on the Numerical Analysis of Electromagnetic Field using Multi-Grid Method. (다층요소강법을 이용한 전자력 수직해석에 관한 연구)

  • Koh, Chang-Sub;Choi, Kyung;Lee, Ki-Sik;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.5
    • /
    • pp.282-288
    • /
    • 1988
  • A Multi-grid method is introduced to Finite Element Analysis of electromagnetic field problems in order to reduce the computational time. The puropse of this work is to study how to intermix discretization and solving process, thereby making the process more effective and to find the optimal factors of Multi-grid method. Several numerical experiments with linear models of uniform and nonuniform grids confirm that the proposed algorithm can reduce the computational time very effectively as compared with con ventional iterative methods. The best results are obtained with V cycle and S.O.R. with the acce leration factor of 1.3-1.4 for smoothing.

  • PDF

Development of Delaunay Triangulation Algorithm Using Subdivision (분할 Delaunay 삼각화 알고리즘 개발)

  • 박시형;이성수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.4
    • /
    • pp.248-253
    • /
    • 2002
  • Delaunay triangulation is well balanced in the sense that the triangles tend toward equiangularity. And so, Delaunay triangulation hasn't some slivers triangle. It's commonly used in various field of CAD applications, such as reverse engineering, shape reconstruction, solid modeling and volume rendering. For Example, In this paper, an improved Delaunay triangulation is proposed in 2-dimensions. The suggested algorithm subdivides a uniform grids into sub-quad grids, and so efficient where points are nonuniform distribution. To get the mate from quad-subdivision algorithm, the area where triangulation-patch will be most likely created should be searched first.

Three-dimensional incompressible viscous solutions based on the unsteady physical curvilinear coordinate system

  • Lee S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.43-48
    • /
    • 1998
  • The development of unsteady three-dimensional incompressible viscous solver based on unsteady physical curvilinear coordinate system is presented. A 12-point finite analytic scheme based on local uniform grid spacing is extended for nonuniform grid spacing. The formulation of a condition is suggested to avoid the oscillation of the series summations produced by the application of the method of separation of variables. SIMPLER and pressure Poisson equation techniques are used for solving a velocity-pressure coupled problem. The matrix is solved using the Generalized Minimal RESidual (GMRES) method to enhance the convergence rate of unsteady flow solver and the Kinematic boundary condition of a free surface flow. It is demonstrated that the numerical solutions of these equations are less mesh sensitive.

  • PDF

Elastohydrodynamic Lubrication of a Profiled Cylindrical Roller (I) (프로파일링을 한 원통형 로울러의 탄성유체윤활 (I))

  • 박태조;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.262-270
    • /
    • 1988
  • A numerical solution of the elastohydrodynamic lubrication problem for an axially profiled cylindrical roller is presented. The problem is analyzed using finite difference method and Newton-Raphson method. The effect of side leakage and compressibility of lubricants are considered and axially nonuniform grid is constructed over the computation zone. Isobars, contours and section graphs show pressure variation and film shape. Contours plot is very similar to the previously reported experimental observations based upon optical interferometry. The maximum pressure and the minimum film thickness occur near the start of the profiling. The method used makes it possible to design an optimum axial profile of the roller to increase the life of rolling bearings.

Electromagnetic Field Characteristics of the Slotted Coaxial Clables (동축 슬롯케이블의 전자파 특성)

  • 이애경;김두경;김정기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.4
    • /
    • pp.17-25
    • /
    • 1991
  • Slotted coaxial cables are used for a wide variety of radio communications and control applications within buildings, subways, tunnels and outdoors. They function as continuous antennas to solve RF coverage problems in difficult or confined areas. In this paper the electric and magnetic field distributions inside and outside of axially slotted coaxial cables are analyzed numerically. This paper gets the fields from the equivalent potentials which are obtained by grid relaxation method. The slot electric field configurations are consistent with Essam E. Hassan's results. The field distributions in the slotted coaxial cables show that the TEM mode doesn't propagate any longer in them. But the fields don't variate with the frequencies that are under the first higher order mode cutoff frequency of shielded coaxial cable of the same dimension The fields inside of the tunnel ($3\times4$) including the slotted coaxial cable axially are similar to those of $TE_{10}$ mode at 38.75 MHz. This method offers the basis for theoretical analysis of coaxial cables with nonuniform slots as well as coaxial cables in tunnels and buildings.

  • PDF

A Study on Buckling Characteristics of 2-way Grid Single-Layer Domes Considering Rigidity-Effect of Roofing Covering Materials (지붕마감재 강성효과를 고려한 2방향 그리드 단층돔의 좌굴특성에 관한 연구)

  • Park, Sang-Hoon;Suk, Chang-Mok;Jung, Hwan-Mok;Kwon, Young-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.85-92
    • /
    • 2002
  • Two way grid single-layer domes are of great advantage in fabrication and construction because of the simple fact that they have only four members at each junction. But, from a point of view of mechanics, the rectangular latticed pattern gives rise to a nonuniform rigidity-distribution in the circumferential direction. If the equivalent rigidity is considered in the axial direction of members, the in-plane equivalent shearing rigidity depends only on the in-plane bending rigidity of members and its value is very small in comparison to that of the in-plane equivalent stretching rigidity. It has a tendency to decrease buckling -strength of dome considerably by external force. But it is possible to increase buckling strength by the use of roofing covering materials connected to framework. In a case like this, shearing rigidity of roofing material increases buckling strength of the overall structure and can be designed economically from the viewpoint of practice. Therefore, the purpose of this paper, in Lamella dome and rectangular latticed dome that are a set of 2-way grid dome, is to clarify the effects of roofing covering materials for increasing of buckling strength of overall dome. Analysis method is based on FEM dealing with the geometrically nonlinear deflection problems. The conclusion were given as follows: 1. In case of Lamella domes which have nearly equal rigidity in the direction of circumference, the rigidity of roofing covering materials does not have a great influence on buckling-strength, but in rectangular latticed domes that has a clear periodicity of rigidity, the value of its buckling strength has a tendency to increase considerably with increasing rigidity of roofing covering materials 2. In case of rectangular latticed domes, as rise-span-ratio increases, models which is subjected to pressure -type-uniform loading than vertical-type-uniform loading are higher in the aspects of the increasing rate of buckling- strength according to the rate of shear reinforcement rigidity, but in case of Lamella dome, the condition of loading and rise-span-ratio do not have a great influence on the increasing rate of buckling strength according to the rate of shear reinforcement rigidity.

  • PDF