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ABSTRACT

Our goal is to present a simple volume-of-fluid type interface-tracking algorithm to compressible two-phase flow
in two space dimensions. The algorithm uses a uniform underlying Cartesian grid with some cells cut by the tracked
interfaces into two subcells. A volume-moving procedure that consists of two basic steps: (1) the update of volume
fractions in each grid cell at the end of the time step, and (2) the reconstruction of interfaces from discrete set of
volume fractions, is employed to follow the dynamical behavior of the interface motion. As in the previous work
with a surface-tracking procedure for general front tracking (LeVeque & Shyue 1995, 1996), a high resolution finite
volume method is then applied on the resulting slightly nonuniform grid to update all the cell values, while the
stability of the method is maintained by using a large time step wave propagation approach even in the presence
of small cells and the use of a time step with respect to the uniform grid cells. A sample preliminary numerical
result for an underwater explosion problem is shown to demonstrate the feasibility of the algorithm for practical

problems.
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1. INTRODUCTION

In previous work by LeVeque and the author (LeV-
eque & Shyue 1995, 1996), a simple surface-tracking
type front-tracking algorithm has been developed for
the efficient numerical resolution of problems with dis-
continuous solutions governed by nonlinear hyperbolic
systems of conservation laws in both one and two space
dimensions. In this algorithm, we choose a uniform un-
derlying grid with some grid cells subdivided by tracked
interfaces made up of moving points in 1D and lin-
ear segments in 2D, approximately aligned with dis-
continuities in the flow field. In each time step, we
solve Riemann problems at each cell boundaries, and
use the resulting solutions, speeds of strong waves in
particular, to determine a new set of interfaces that
approximate the expected locations of discontinuities
in the solution at the end of the time step. A high
resolution finite volume method is then applied on the
resulting nonuniform grid to update all the cell val-
ues. Here a large time step wave propagation approach
is employed to overcome a major difficulty associated
with the limit on the time step when small cells are
created by the tracked front cutting through the grid,
while maintaining conservation of the algorithm, see
(Chern et al. 1986, Chern & Colella 1987, Mao 1993)
for the other possible approaches to deal with this so-
called small cell problem appearing in the aforemen-
tioned front-tracking literatures. Note that if we have
chosen the new interface locations well, the resulting
solution will remain sharp and be smooth away from
these new interfaces. When the update of the solution
is done, the old interfaces can then be eliminated by
recombining the adjacent cells.

While our front tracking algorithm has been applied

volume tracking method, surface tracking method, stiffened gas equation of state, compressible

quite successfully to solve many shock wave and inter-
face problems arising in gas dynamics and geophysics,
see (Shyue 1993, Shyue 1998) for additional results,
it is well-known however that this algorithm with the
surface-tracking procedure included does not work ef-
ficiently to a class of problems with complicated topo-
logically changes of tracked fronts in multiple space
dimensions. To improve the algorithm when such a
scenario occurs, it is our goal in this paper to de-
scribe a relatively simple volume-tracking procedure for
the propagation of interfaces, Combining that front-
moving procedure to the large time step wave prop-
agation approach for the solution update would yield
potentially a more robust interface-tracking algorithm
for an easy handling of complex front motion, This will
be described in more details in Section II, see (Bell et
al. 1991) for a similar approach. A sample numerical
result for compressible two-phase flow will be shown
in Section III to give a preliminary validation of the
proposed algorithm.

II. FRONT TRACKING METHOD

Irrespective of the number of space of dimension, it
is quite common that, in each time step, an Eulerian-
based front tracking method for hyperbolic systems
of partial differential equations (e.g., Chern & Colella
1987, Glimm et al. 1998, LeVeque & Shyue 1995, 1996)
would consist of the following steps:

1. [Front propagation step] Flag tracked interfaces
by checking solutions of Riemann problems, de-
termine the size of the next time step, and the
location of the tracked interfaces at the next time
step,
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2. [Create new grid step| Modify the current grid by
inserting these new tracked interfaces; some cells
will be subdivided and the values in each subcell
must be initialized,

3. [Solution update step] Take a time step on this
nonuniform grid using a conservative finite vol-
ume method to update the cell averages,

4. [Remove old grid step] Delete the old tracked in-
terfaces from the previous time step; some sub-
cells will be combined and a value in the combined
cell must be determined from the subcell values.

Figure 1 shows a typical example from a surface-
tracking procedure for front propagation in two space
dimensions. In that procedure, a one-dimensional Rie-
mann problem in direction normal to each tracked in-
terface is solved by using the values from the adjacent
cells as data. Since it is expected that the solution
to this Riemann problem would consist of only one
strong wave, corresponding to the shock or interface
(contact discontinuity or slip line) being tracked, and
other weaker waves, we may then follow the strong wave
we want to track to a new location at the end of the
time step, see (LeVeque & Shyue 1995) for some dis-
cussions on how one might choose a time step in the
method. Clearly, in order to have the new tracked in-
terfaces to form a continuous piecewise linear curve as
shown in Fig. 1, the solutions of neighboring Riemann
problems should be used in some coordinated manner
to determine the new interfaces. There are various ways
that this can be done via some sort of curve fitting
through points determined by the strong waves from
the Riemann solutions. In (LeVeque & Shyue 1998),
we present one simple approach for that in more de-
tail. Note that the final interface and points on the
new grid are determined by where this curve intersects
the grid line. Nevertheless, if we do not view the inter-
face we introduce as being the definitive location of a
tracked front, but rather as a grid interface that is suf-
ficiently well located and aligned that the solution can

"be well captured on the resulting grid, we have some
flexibility on this score.

Once the new grid is constructed, the solution can
then be advanced using a fully conservative shock cap-
turing method. This method should be able to deal
with the irregular cells near the tracked interface. In
“particular, it must maintain stability even if some of
these cells are very small relative to the underlying
mesh size used to détermine the time step, and also
hopefully to maintain second order accuracy in the
smooth flow on either side. To accomplish this, one
possible way is to use a high resolution method based
on the large time step wave propagation approach, de-
veloped by LeVeque, see (LeVeque 1988, LeVeque &
Shyue 1996). The main idea is that waves arising from
the solution of Riemann problems at the cell bound-
- aries are propagated the appropriate distance deter-
mined by the wave speed and time step, and used to
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Fig. 1.— A typical surafce-tracking procedure for front
propagation. On the left: The original tracked interfaces
are updated using the strong wave speeds obtained from the
normal Riemann problems during the current time step. On
the right: Piecewise linear interpolant through the points
are made and the final interface and points on the new grid
are determined by where this curve intersects the grid line.

old

update cell averages in any grid cell they encounter.
The wave may affect more than one cell if the neigh-
boring cell is very small. In this manner the stencil
of the method adjusts automatically so that the CFL
(Courant-Friedrich-Lewy) condition is always satisfied
regardless of the configuration of the grid.

Note that the algorithm we have just described is
not a moving-grid method in that the grid system of
the later method would be typically adjusted to fit the
location of the tracked discontinuity. It should be men-
tioned that there are many instances to have the desire
of keeping the discontinuity sharp, and consequently
the advantage of a front tracking method over a shock
capturing method. One example among them is in the
simulation of compressible two-phase flow with very dif-
ferent fluid component (say, solid and gas) separated
by interfaces, and under extreme flow condition, see
(Miller & Puckett 1996). In this case, it would be very
difficult in general to devise a shock-capturing type
method to deal with the numerical smearing of interface
in a proper manner (of course, for some simpler cases, it
is still a possible task to do, see (Shyue 1998)). Other
famous example is the detonation wave computation
in combustions, see (LeVeque & Shyue 1995). Clearly,
there are many outstanding difficulties associated with
the development of a robust front tracking method in
multiple space dimensions. Chern et al. pointed out
some of them in their paper (Chern et al. 1986).

In this paper, we will address one of them, namely,
the devise of an efficient method for the handling of
complicated topological change of interfaces. Firstly,
it is well-known in the scientific community that the
surface-tracking type of the procedure as shown in
Fig. 1 is not a good candidate to be considered; this
is so for its difficulty in both algorithmic and program-
ming issues to realize the problem. Alternatively, in
the following we will focus our attention on a popular
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volume-tracking approach to move front which is much
easier to program than the surface-tracking method
does. More importantly, it has the capability to handle
the splitting and mergering of fronts as well, see (Bell
- et al. 1991) for example.

In"a typical volume tracking method, we choose
a uniform underlying grid, and have volume fraction
function Y for representing specific fluid component in
each cell, say in cells when ¥ = 1 we have liquid, in
cells when ¥ = 0 we have gas, while in cells when
Y =¢ (0,1), we have liquid-gas mixture, see Fig. 2.
‘Note that based on the discrete data for volume frac-
tions, it is easy to reconstruct the approximate location
of the interface by using numerical techniques such as
the simple line interface calculation (SLIC) of Noh and
Woodward, the center of mass of Saltzman, the central
difference of Hirt and Nichols, the gradient method of
Parker and Youngs , and the least-squares methods of
Pilliod and Puckett. These techniques differ from the
way in determining the interface that retains the same
volume fraction within the cell, see (Rider & Kothe
1998) and reference therein for more details.

Figure 3b) shows three examples of the results ob-
tained using the center of mass reconstruction tech-
nique for the volume fractions given in Fig. 3a). From
the figure, it is easy to observe that each of the recon-
structed interface does not form a continuous curve,
even though the true interface is a continuous one. This
kind of interface structure is often seen in a volume
tracking method. In fact, because the interface is usu-
ally made only using information from the nearby cells
and does not need to connect to each other, it is pos-
sible to make use of this property and deal with the
change of topology in an easy manner when employing
a volume tracking method.

In this case, to advance the tracked interface from
the current time to the next, in two dimensions, we
- first solve a linear transport equation of the form for
volume fraction Y,

oY )% gy

using the current discrete data in each grid cell. From
the resulting volume fractions, we then apply an inter-

~ face reconstruction technique for determining the new
interface location and grid. Here v and v are the under-
lying velocity field in the z- and y-directions, respec-
tively.

Having found the new interface location and the
new grid at the end of the time step, as in a surface-
tracking method for hyperbolic systems of partial dif-
ferential equations, we may continue the volume track-
ing method by performing Steps 3 and 4 of the gen-
eral front tracking procedure. Thus, it should be
clear that the only difference between the surface-
tracking and volume-tracking methods is on the way
how the front is propagated, and the new grid is
made. Note that a one-dimensional version of the front
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Fig. 2.— A typical setup in a volume-tracking procedure
for interface tracking. On the left: discrete data for the
volume fractions of fluid component is given, say for liquid
Y =1, for gas Y = 0, and for liguid-gas mixture Y € (0,1).
On the right: reconstruction of the interface from volume
fractions.

tracking code (written in Fortran) is available on web:
http://www.math.ntu.edu.tw/ shyue/code.

For readers who are interested in a two-dimensional

version of the code, it is available upon request.

III. NUMERICAL RESULTS

To give an example of how our newly proposed
interface-tracking algorithm works for practical prob-
lems, we consider a simplified two-phase flow problem
with two different fluid components, liquid and gas,
separated by immiscible interfaces. In this problem, we
use an Eulerian formulation of the equations in which,
on the whole part (liquid or gas part) of the domain,
the fluid is governed by the full set of the compressible
Euler equations of the form,

P pu pv
O lpu|, 0| puiep |, 0| o |_,
ot | m |7 bz puv dy | e’ +p '
E Eu + pu Ev+p

Here p is the density, v and v are the velocities in the
x- and y-direction respectively, p is the pressure, and E
is the total energy . We assume a general compressible
material that the specific internal energy, denoted by
e, satisfies the stiffened gas equation of state,

e:__l__ <p+fyB),

-1 p

and E = pe + p(u? +v%)/2. Here v is the usual ratio of
specific heats (v > 1), and B is a prescribed pressure-
like constant, As for the initial condition, at the depth
of 0.3m below a horizontal air-water surface, there is
a circular gas bubble of radius r¢ = 0.12m in water.
Inside the bubble, the state variables are -

(0, p, v, B) = (1250 kg/m®, 10° Pa, 1.4, 0) ,
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a) Constructed interfaces from analytic expressions
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Fig. 3.— Three examples are shown for the approximate interface locations: a) made by using standard marker-and-cell
type method from analytic expression of the interface, b) made by using the center of mass interface reconstruction algorithm

from voulme fractions.

while outside the bubble they are
(o, p, v, B) = (103 kg/m®, 10° Pa, 4.4, 6 x 10° Pa) ,

see Fig. 4 for a schematic setup of the problem. Initially
both the gas and water are in a stationary position,
but due to the pressure difference between the fluids,
breaking of the bubble results in a circularly outward-
going shock wave in water, an inward-going rarefaction
wave in gas, and an interface lying in between that
separates the gas and the water. Soon after, this shock
wave is diffracted through the nearby air-water surface,
causing the subsequent deform of the interface topology
from a circle to oval. Note that initially the air-water
surafce is at the standard atmospheric condition.

Figure 4 shows numerical results of the interface mo-
tion at six different times, ¢t =0, 0.1, 0.2, 0.4, 0.6, and
0.8 ms. Here the bubble interface is tracked by using
the proposed interface-tracking method with a 200x200
rectangular grid and Courant number 0.5, whereas the
air-water free surface is untracked. It can be shown that
the results obtained here agree quite well with the re-
sults obtained using the standard surface-tracking type
front-tracking method (LeVeque & Shyue 1996); this
is the way it should be, see (Grove & Menikoff 1990)
also for a similar computation where both the bubble
and air-water interfaces are tracked by using a surface-
tracking method.

IV. CONCLUSION

We have presented a simple volume-of-fluid type ap-
proach to interface tracking. The algorithm uses a
volume-tracking procedure to advance tracked inter-
faces from the current time to the next in a uniform
underlying Cartesian grid. The cell values in the result-
ing slightly nonuniform grid is updated by using a high
resolution finite volume method based on a wave propa-
gation formulation. Numerical results shown in the pa-
per indicate that for a distinguished interface without
complicated topological change this method is at least
as robust as the standard surface-tracking method. On-
going work is to further validate the method, and use
the method as a tool to study chaotic luid mixing prob-
lem which is important in many astrophysical flows and
other field of applications as well.
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