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ABSTRACT

The development of unsteady three-dimensional
incompressible viscous solver based on unsteady physical
curvilinear coordinate system is presented. A 12-point
finite analytic scheme based on local uniform grid
spacing is extended for nonuniform grid spacing. The
formulation of a condition is suggested to avoid the
oscillation of the series summations produced by the
application of the method of separation of variables.
SIMPLER and pressure Poisson equation techniques are
used for solving a velocity-pressure coupled problem.
The matrix is solved using the Generalized Minimal
RESidual (GMRES) method to enhance the convergence
rate of unsteady flow solver and the Kinematic boundary
condition of a free surface flow. It is demonstrated that
the numerical solutions of these equations are less mesh
sensitive.

1. Introduction

In the physical curvilinear coordinate system, each
component of the velocity has the same direction as the
direction of each coordinate line and has physical value.
The physical curvilinear component form of the
divergence of a velocity vector has been widely used to
make the pressure equation in velocity-pressure coupled
problem because of its simple form. The physical
curvilinear components form of the velocity was first
introduced to give physical meaning to covariant or
contravariant component forms lost by transformation by
Truesdell [1]. Demirdzic et al. {2] derived the physical

curvilinear components form in  nonorthogonal
coordinates for Reynolds-averaged Navier-Stokes
equations. The equations of the Cartesian forms were

transformed directly into physical curvilinear component
forms by a two-step procedure; then they were applied to
a two-dimensional problem.  Until now, practical
applications have been limited to two-dimensional
problems, because of large storage requirements and
numerical error associated with the evaluation of
geometric tensor and connection coefficients on the cell
face. An approach which is different from Demirdzic et
al.’s approach [2], was tried by Lee [3]. In his approach,
the partial differential equations with the coordinate-free
vector form are transformed into the physical curvilinear
coordinate system using general transformation laws.

To derive the governing equations of the unsteady

flow, two kinds of approaches have been suggested.
One is to use the concept of Lie derivatives (Schouten,
[4]). Ogawa and Ishiguro [5] derived the field equations
using the contravariant components form in moving
coordinates under the concept of Lie derivatives. In the
present research, the other approach taken by Warsi [6] is
used because of its simplicity in expressing the time
derivative.

Numerical methods that have been generally used to
discretize partial differential equations are finite volume,
finite difference, and finite element methods. Among
these methods, the finite volume methods have been
widely used in compressible and incompressible flows.
The Roe’s approximate Riemann solver (Roe [7])
especially has been used to calculate the numerical flux at
cell faces primarily used in compressible flow.
However, this scheme is based on a one-dimensional
problem in which the waves travel normal to the cell face.
Higher order schemes for the numerical flux vector was
studied by Whitfield et al. [8]. Another method used to
discretize partial differential equation is the finite analytic
method by Chen and Chen [9]. This method provides
an upwinding effect and avoids the truncation error.
Several methods based on a one-dimensional, a two-
dimensional, and a three-dimensional problem have been
studies. In the present research, a 12-point scheme
based on a hybrid method that combines a two-
dimensional and a one-dimensional problem is selected to
discretize unsteady three-dimensional viscous
incompresible equations by Patel et al. [10]. The
standard form of finite analytic scheme results in
nonconservative forms. Therefore, the accuracy can
suffer due to the lack of conservation. However, the
modeling of three-dimensional equations based on a
hybrid method is noted to be more accurate in converting
differential equations into discretized equations than that
based on a one-dimensional problem of the finite volume
method. In the present research, the finite analytic
coefficients based on the local uniform grid spacing by
Patel et al. [10] are extended for nonuniform grid spacing.

Each analytic coefficient has a series summation.
Unfortunately, in many instances, the series summation
does not converge and oscillates. The success of a finite
analytic scheme depends on the calculation of a series
summation produced by using the method of separation
of variables in the discretization of the partial differential
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equation. In this research, this problem is addressed by
formulating the new condition to avoid the oscillation.
The efforts have been made in the calculation of finite
analytic coefficients.

The Kinematic condition has been applied to update
the unknown location in the incompressible free surface
flow. This condition can be derived using the concept
of the material surface and is coupled with the
momentum equations. This condition is required as the
boundary condition to solve the free surface motion and
is a hyperbolic PDE. The method is introduced to solve
this condition. No artificial dissipative terms are
required and added in this method.

The methodologies developed and derived in this
research are validated by computing a three dimensional
lid-driven cavity laminar flow and a free surface
turbulent flow.

2. Transformation
In the following analysis, x;

are Cartesian

coordinates, &' are curvilinear coordinates and £ are

physical curvilinear coordinates. First, consider the
general transformation laws under the two change of the

coordinates system x, to &' and &' to EV. The

relationship between the coordinates x; and &' can be
expressed as follows.

g =B (x;,1) (1)

The relationship between the coordinates &' and &%
can be expressed as follows:

ED =EOE)  where AED = [g, AE @)

Jgi are evaluated at &* = constant and k+#i. and £¢
resemble the coordinate stretching in each direction of
g'. In view of transforming the coordinates from x;

to £ and E' to £ the vectordr can be written as:

ar=-2L 4t =a,de’
aE
)

1
a

=) ‘/g;l— =i

The repeated indices imply a sum. a; are covariant
base vectors in the curvilinear coordinate system and
a ., are covariant base vector in the physical curvilinear

—=dtV =a,dt® wherea

g(l)

G
coc;rdinate system.

The physical curvilinear components of a velocity
vector, u®”, can be defined as the magnitude of the i”
component projected onto the i* physical curvilinear
coordinate direction, and are expressed as:

u® =u-a (5)

In the Cartesian coordinate system, u® are identical to
the physical components of the velocity u(i). To obtain
the divergence, gradient and Laplacian operators of a
vector in the physical curvilinear coordinate system, one
starts from the covariant and the contravariant derivatives
of the base vectors. Detailed description of this can be
found in Lee[3]

From now, the partial differential equations with the
vector forms will be given in terms of the physical
components in physical curvilinear coordinates. Now,
using the general transformation laws, for a scalar ¢, the
gradient can be written as:

20 o o 0

V¢ é(l) = - g a—é(k_)_ g(i) (6)

Also, the gradient of a vector u can be expressed using

equation (S) and the covariant derivatives of the base
vectors in the physical curvilinear coordinate system as:

du

- ®y
Vu= é"’ 2 =ua 2" =g%uaga, M
The quantity u€) is called the covariant derivative of the
physical curvilinear components of a vector u. One
can easily evaluate the divergence of a vector as:.
y 24
N 6_ .6
VE=@3 —u‘(‘i)
®)

(i)_ﬁa J

o ] 6&,“) (Jé: u(i))

The Laplacian can be evaluated by the divergence of the
gradient of a vector u as:

where u

()

. du
2y = gRpmr® _ 4o pm Mo
Viu =g UG Ty = Wim T + P —~ol20 ®

From now, think about an unsteady coordinate
system. The time derivative of a scalar or a vector F is
given by Warsi [6].

OF & OF OoF a®

glxi =[_+ 6@“’ —at_]ﬁm (10)
oF oF OF ox,

"_'5(-\ =['—+_”_]

ot ot ox, ot

Here, x; represent the fixed Cartesian coordinate system,

while £@represent the unsteady physical curvilinear
coordinate system. Also, T represent the time in this
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coordinate system. The components of the grid speed
can be easily evaluated by replacing F with £ in the
second equation of the equation (10).

W0 2B kY

&x, or {an

The divergence of the grid speed vector w is written as:

v&; O w® laJ
v. Noi Y T 12
W= %0 r—— ) =T (12)
J is the Jacobian of the inverse transformation. The

vector form of incompressible Reynolds-averaged
Navier-Stokes equations, with the body force in unsteady
coordinate system, is given as:

‘;—B+(v_u)~g =—VP+v Vi u+{Vu+(Vu)' |- Vv,

(13)
z +£k
Fn? 3

Here, Fn is a Froude number, P is a total pressure, p is a
static pressure. The procedure for the ransformation of
the incompressible viscous equations, based on an
unsteady physical curvilinear coordinate system, is now
introduced using the derivations for the gradient,
divergence operator, Laplacian and the time derivative,
one can get the equations in an unsteady coordinate
system. Each physical covariant base vector a, is

independent; therefore an unsteady physical curvilinear
component form of the Reynolds-averaged Navier-Stokes
equations can be derived in the scalar form as:

u®

oP
Rar —gr_+ R'“V(J)u M= Regl-2 @

é(})

Uy (I) +g(:k) (J) }]

(14)

ag(])
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3. Discretization of the momentum equation

Reynolds averaged Navier-Stokes and continuity
equations in the physical curvilinear coordinate system
were derived. Equation (14), which has a
nonconservative form, is rearranged into the standard
form for the use of the finite analytic method. In the
present research, the 12-point scheme by Patel et al. [10]
is used, modified and extended The new formulation of
a condition is suggested to reduce or avoid the oscillation
of the series summation for any cell Reynolds number.

3.1 12-point scheme for the local nonuniform grid
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The standard form of the finite agnalytic method is
given as:

b+, +9,, =2A0, +2Bd, +2Ch, +S

as)

The subscripts x, y, and z indicate derivatives. The
stretched coordinates are used to make a standard form of
the differential equations in the physical curvilinear
coordinate system. The stretched coordinates £ are
defined as:

g = £e (16)

1o, 1
Ve Vee

Equation (16) shows the relation between  each
coordinate system. For a local nonuniform grid spacing
a different lengths are taken in the formulation. An
interpolation formula developed in the Cartesian
coordinate system by Chen and Chen [9] is used to
consider the effect of the nonuniform length for the local
elements in the transformed coordinates E". The
derivation of a 12-point FA coefficients of the three-
dimensional differential equations with the nonuniform
length in each stetched curvilinear coordinate direction is
based on the analytic discretized equation for a one-
dimensional local element with nonuniform spacing.
Detailed description can be found in [3].

3.2 The series summation

Each analytic coefficient has the series summation
which is a function of local cell Reynolds number.
Unfortunately, the series summation do not always
converge; therefore, it may be said that the accuracy of
the solution depends on the calculation of the series
summation.  Patel et al [10] suggested using the
asymptotic expression based on the theory of
characteristics, to avoid the calculation of the series
summation for only the large cell Reynolds number.
For a large positive cell Reynolds number in a one-
dimensional problem, the asymptotic expression means
that the downstream influence is negligible. Chen et al
[11] suggested to use this expression for a cell Reynolds
number defined as Ah or Bk 2100. Therefore, an
upwind effect is taken into consideration in this range.
Here, k and h represent the local spacing in
the n and £ coordinate directions, respectively. The series
summation generally does not oscillate for a small cell
Reynolds number, while this oscillates for the most part
for a large cell Reynolds number. In present work, a
vigorous examination has been performed for a wide
range of A and B, and the grid spacing, h, k. It is found
that the oscillation depends on the sum of an absolute
value of each local cell Reynolds number and the
asymptotic expression can be used in the range of the cell



Reynolds number, at least Ah or Bk >30. A basis of
the use of the asymptotic expression is suggested as
follows:

Cri= "AZ +B? +(-—-)?len2 <|Ah|+|Bk|
lenl

where lenl=min[h,k], len2=max[h,k], and c,=28

an

The value of the coefficient c,took 28 through trial and
error. The method by the iteration to calculate the series
summation must be used even in large cell Reynolds
number if not oscillate. Therefore, one cannot affirm
that the asymptotic expression can be used in a specially
fixed cell Reynolds number. Three cases are selected to
check the condition of equation (17).

[1]. A =0.9~9000000, B = 0.09 ~ 900000,
h=k=0.01

[2]. A=0.1~1000000, B =0.01~100000,
h=0.009, k = 0.001

[3]. A=0.1~1000000, B = 0.02 ~100000,
h=0.01, k =0.002

The variation of the finite analytic coefficients is
shown for a large range of the cell Reynolds number in
figure 1.
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Figure 1. Variation of FA coefficients by changing the
cell Reynolds number (b):case 1, (c):case 2, (d):case 3.

In the first case, the aspect ratio of the grid spacing in a
two-dimensional problem is taken one and the ratio of A
and B is taken ten. The summation is not convergent
and oscillates even though the cell Reynolds number is
less than 100. However, the difference of the value
calculated between two approaches is negligible because
the hight of the oscillation is small. Generally, the
method suggested by Chen et al.[11] and the present
method are in good agreement in the first case. In the
present suggestion, the asymptotic expression was used in

the range, |Ah[+|Bk] > 63. For small cell Reynolds
number less than 1, the value of FA coefficients looks
nearly constant and the values of CSC, CNC, CEC and
CWC are dominant Relative importance of the
summation of the values of CSW, CSE, CNW, and CNE
is less than 20 percent. However, as the positive cell
Reynolds numbers increase, the priority of CSC, CNC
and CEC decrease to zero. Namely, the influence of
south, north and east is negligible at large cell Reynolds
number. On the other hand, the priority of CWC
increase up to 90 percent. In the second case, the aspect
ration of the grid spacing, and the ratio of A and B are 9
and 10, respectively. In the present method, the
asymptotic expression was used even at very large cell
Reynolds number, |Ah| or [Bk] > 2250 and max[Ah, Bk]
> 108. Figure Ic shows the two approaches are in good
agreement in case of max{Ah, Bk] < 100 or max[Ah, Bk}
> 10000. However, there are a big difference around
max[Ah, Bk] = 1000. The series summation must be
used if the series summation does not oscillate. The
bigger deviation between two approaches is shown in the
third case. In the third case, the aspect ration of the grid
spacing and the ration of A and B are 5 and 10,
respectively. In the present method, the asymptotic
expression was used in the range, Ah or Bk > 714.
Figure 1d shows a jump of the values at max[Ah,Bk] =
100 in the Chen et al. [11].

For a small cell Reynolds number, max{Ah, Bk] <
30, the series summation is generally used to calculate
FA coefficients, except for special cases.  The
asymptotic expression is generally used at very high
Reynolds numbers. Therefore, there are no difficulties
to compute the flow field at the low and the very high
Reynolds numbers. The difficulty is in the flow
computation at the intermediate Reynolds number.
Equation (20) suggested in the present research gives the
criteria for the use of the asymptotic expression in the
range of from low to high cell Reynolds number.

4. Kinematic Boundary condition

The free surface Kinematic boundary condition
needs to update the unknown free surface location. The
free surface is unknown a priori and the Kinematic
condition needs to be solved with the momentum
equations in a coupled manner. In the following the
Kinematic condition will be derived

4.1 Derivation of the kinematic condition

The concept of the material surface is used for the
free surface. A material surface moves with the flow
and deforms in shape as the flow progresses. There are
no mass fluxes in or out of the surface, so that its
boundary is always composed of the same fluid particle.
If the equation of the surface is represented by F(x,y,z,t)
= 0, then the equation of the surface at the time, t+8t is
expressed as:
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F(r +6r,t+68t)=0 (18)

Using the Taylor’s series expansion, the Kinematic
boundary condition is derived as:

19

If the equation of the surface F(x,y,zt) is decomposed
into z-coordinate and G(x,y,t), the Kinematic boundary
condition to be solved for G(x,y,t) can be obtained as:

E—g(z G)+u,; ——(z G)
Dt 0x,
(20
oG oG oG
= —U———V—+W
ot ox oy

The time derivative of G in unsteady coordinate system
can be expressed using the equation (10) as:

oG, oG

oG ox,
.___..._lx
ox; o

—], == 21
—le == @
It is assumed that the particle on the upper boundary
moves up and down along the z-coordinate. Finally, the
Kinematic boundary condition in unsteady coordinate
system is obtained as:

(22)

To make the standard form of FA scheme, the second
derivative terms are added in both sides of equation (22).
And then, a modified equation is solved using a 9-point
FA scheme.

5. Results and Discussions

Incompressible viscous equations in the unsteady
physical curvilinear coordinate system were derived.
The 12-point FA discretization scheme based on local
nonuniform grid spacing (Lee [3]) was used. For
incompressible flow, the density is constant and the
pressure is a primitive variables. The real difficulty in
the simulation of the incompressible flow field lies in
predicting an unknown pressure field. Several methods
currently are being used for the solution of
incompressible viscous equations. In all these methods,
the momentum equations are used to compute the
velocity field, while different equations are employed to
compute the pressure field. The present procedure is
based on the SIMPLER algorithm and the pressure
Poisson equation method. The pressure Poisson
equation was written in the physical curvilinear
coordinate system and solved by using a 12-point FA
scheme based on local nonuniform grid spacing. Detailed

description can be found in [3]. The matrix, that
consists of the coefficients resulting from the finite
analytic method, is solved using the Generalized Minimal
RESidual (GMRES) method to enhance the convergence
rate of the flow solver. These methodologies are
validated by simulating a three-dimensional lid-driven
cavity laminar flow. and a three-dimensional free surface
turbulent flow.

5.1 Lid-driven three-dimensional cavity laminar flow

The velocity components on the wall are zero,
except on the moving wall with a velocity 1. The
computations are performed on a grid consisting of
16*16*16 grid points. To obtain the solution for the
steady state, only one iteration per each time step is used.
All computations are performed using a relaxation factor
of 1. Figure 2 shows that the rate of the convergence
depends on the size of the dimensionless time step in the
range from 0.01 to 2. The computations leads to a fully
converged solution with fewer that 200 iterations.

u L - L0 =t
ReniOt

Figure 2 Convergence histories for different time steps
and different Reynolds numbers

Peric [12] mentions, if the angle between the two
coordinate lines in the two-dimensional problem is

greater than 135°0r less than 45°, the pressure
correction equation does not converge at all, or the
convergence rate is too slow. Cho and Chung [13] used
a new treatment method for nonorthogonal terms in the
pressure correction equation in order to enlarge the
ranges for convergence and found that the smaller the
angle, the narrower the region of relaxation factor. In
the present research, the computations are performed at
several inclined angles, 90, 60, 45, 30, 15, 10, and §
degrees to check the rate of the convergence on the grid
skewness. It is found that the solutions always
converged, even for very small inclined angles but more
iterations were required for convergence for small
inclined angles. Figure 3 shows the convergence
histories in various inclined angles from 90 to 5 degrees.
It was shown that the present code is less mesh sensitive
and converges well, even at the large skewness.
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Figure 3 Convergence histories in various inclined
angles (degree)

5.2 a three-dimensional free surface turbulent flow

As the next test, three-dimensional free surface
turbulent flow was computed. The upper boundaries
moves arbitrary with the flow, and the grid in the
computational domain is generated every time step until
the solution of the steady state is obtained. The
Baldwin-Lomax turbulence model [14] was used to
calculate the eddy viscosity in the turbulent flow. The
computations were performed with three different Froude
number under the same conditions. The Froude
numbers and the Reynolds number used in the
experiment ([15][16]) are 0.267, 0.289, 0.316, and
3.3%10°%, respectively. A comparison of the wave
elevations on the Wigley hull surface for three different
Froude numbers and a perspective view of the wave
elevation is shown in Figure 4. The residue remains
around 10~ after t=0.5. These computations took 400
time steps on a 125*36*35 grid.
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Figure 4 The wave elevations on the hull surface, (a) :
experiment, (b) : computation, and a perspective view (c)
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