• 제목/요약/키워드: nonlinear heat equation

검색결과 60건 처리시간 0.029초

Discrete Group Method for Nonlinear Heat Equation

  • Darania, Parviz;Ebadian, Ali
    • Kyungpook Mathematical Journal
    • /
    • 제46권3호
    • /
    • pp.329-336
    • /
    • 2006
  • In the category of the group theoretic methods using invertible discrete group transformation, we give a useful relation between Emden-Fowler equations and nonlinear heat equation. In this paper, by means of appropriate transformations of discrete group analysis, the nonlinear hate equation transformed into the class of the Emden-Fowler equations. This approach shows that, under the group action, the solution of reference equation can be transformed into the solution of the transformed equation.

  • PDF

NONLINEAR HEAT EQUATIONS WITH TRANSCENDENTAL NONLINEARITY IN BESOV SPACES

  • Pak, Hee Chul;Chang, Sang-Hoon
    • 충청수학회지
    • /
    • 제23권4호
    • /
    • pp.773-784
    • /
    • 2010
  • The existence of solutions in Besov spaces for nonlinear heat equations having transcendental nonlinearity: $$\frac{\partial}{{\partial}t}u-{\Delta}u=F(u)$$ is investigated. In particular, it is proved the local existence and blow-up phenomena of the solutions in Besov spaces for nonlinear heat equations corresponding to two transcendental nonlinear functions $F(u){\equiv}{\mid}u{\mid}e^{u^2}$ and $F(u){\equiv}e^u$ of rapid growth.

GRADIENT ESTIMATES AND HARNACK INEQUALITES OF NONLINEAR HEAT EQUATIONS FOR THE V -LAPLACIAN

  • Dung, Ha Tuan
    • 대한수학회지
    • /
    • 제55권6호
    • /
    • pp.1285-1303
    • /
    • 2018
  • This note is motivated by gradient estimates of Li-Yau, Hamilton, and Souplet-Zhang for heat equations. In this paper, our aim is to investigate Yamabe equations and a non linear heat equation arising from gradient Ricci soliton. We will apply Bochner technique and maximal principle to derive gradient estimates of the general non-linear heat equation on Riemannian manifolds. As their consequence, we give several applications to study heat equation and Yamabe equation such as Harnack type inequalities, gradient estimates, Liouville type results.

HARNACK ESTIMATES FOR NONLINEAR BACKWARD HEAT EQUATIONS WITH POTENTIALS ALONG THE RICCI-BOURGUIGNON FLOW

  • Wang, Jian-Hong
    • 대한수학회지
    • /
    • 제57권2호
    • /
    • pp.313-329
    • /
    • 2020
  • In this paper, we derive various differential Harnack estimates for positive solutions to the nonlinear backward heat type equations on closed manifolds coupled with the Ricci-Bourguignon flow, which was done for the Ricci flow by J.-Y. Wu [30]. The proof follows exactly the one given by X.-D. Cao [4] for the linear backward heat type equations coupled with the Ricci flow.

난류박리 및 재부착 유동에 대한 저레이놀즈수 비선형 열전달 모형의 개발 (A Non-linear Low-Reynolds-Number Heat Transfer Model for Turbulent Separated and Reattaching Flows)

  • 리광훈;성형진
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.316-323
    • /
    • 2000
  • A nonlinear low-Reynolds-number heat transfer model is developed to predict turbulent flow and heat transfer in separated and reattaching flows. The $k-{\varepsilon}-f_{\mu}$ model of Park and Sung (1997) is extended to a nonlinear formulation, based on the nonlinear model of Gatski and Speziale (1993). The limiting near-wall behavior is resolved by solving the $f_{\mu}$ elliptic relaxation equation. An improved explicit algebraic heat transfer model is proposed, which is achieved by applying a matrix inversion. The scalar heat fluxes are not aligned with the mean temperature gradients in separated and reattaching flows; a full diffusivity tensor model is required. The near-wall asymptotic behavior is incorporated into the $f_{\lambda}$ function in conjunction with the $f_{\mu}$ elliptic relaxation equation. Predictions of the present model are cross-checked with existing measurements and DNS data. The model preformance is shown to be satisfactory.

온돌난방공간(溫突暖房空間)의 내표면(內表面) 대류열전달특성(對流熱傳達特性)에 관(關)한 연구(硏究) (Convection Heat-Transfer Characteristics of Ondol-Heated Room)

  • 손장열;안병욱
    • 설비공학논문집
    • /
    • 제3권5호
    • /
    • pp.376-385
    • /
    • 1991
  • The purpose of this paper is to propose basic data on convection heat-transfer coefficients in Ondol-heated room. Surface temperatures and several temperatures around each inside surface of wall, floor and ceiling composed of heating room are measured vertically in Ondol-heated model rooms, and the vertical temperature profiles could be expressed by nonlinear equation models. Also, the convection heat transfer phenomena are analysed from the nonlinear equation models. In the results, the convection heat-transfer coefficients of Ondol heated space are suggested by the term of temperature difference between each wall surface and room air temperature and by the relationship between Nusselt number and Rayleigh number of dimensionless numbers.

  • PDF

AN APPROXIMATE ANALYTICAL SOLUTION OF A NONLINEAR HYDRO-THERMO COUPLED DIFFUSION EQUATION

  • Lee, Jeong-woo;Cho, Won-cheol
    • Water Engineering Research
    • /
    • 제2권3호
    • /
    • pp.187-196
    • /
    • 2001
  • An approximate analytical solution of a nonlinear hydro-thermo coupled diffusion equation is derived using the dimensionless form of the equation and transformation method. To derive an analytical solution, it is drastically assumed that the product of first order derivatives in the non-dimensionalized governing equation has little influence on the solution of heat and moisture behavior problem. The validity of this drastic assumption is demonstrated. Some numerical simulation is performed to investigate the applicability of a derived approximate analytical solution. The results show a good agreement between analytical and numerical solutions. The proposed solution may provide a useful tool in the verification process of the numerical models. Also, the solution can be used for the analysis of one-dimensional coupled heat and moisture movements in unsaturated porous media.

  • PDF

Correlation between Ultrasonic Nonlinearity and Elastic Nonlinearity in Heat-Treated Aluminum Alloy

  • Kim, Jongbeom;Jhang, Kyung-Young
    • 비파괴검사학회지
    • /
    • 제37권2호
    • /
    • pp.115-121
    • /
    • 2017
  • The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke's equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at $300^{\circ}C$ for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke's equation. The results showed that the variations in these parameters were in good agreement with each other.