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Abstract: An approximate analytical solution of a nonlinear hydro-thermo coupled dittusion equation is derived using the

dimensionless form of the equation and transformation method. To derive an analytical solution, it is drastically assumed that

the product of first order derivatives in the non-dimensionalized governing equation has little intluence on the solution of

heat and moisture behavior problem. The validity of this drastic assumption is demonstrated. Some numerical simulation

is performed to investigate the applicability of a derived approximate analytical solution. The results show a good

agreement between analytical and numerical solutions. The proposed solution may provide a useful tool in the verification

process of the numerical models. Also, the solution can be used for the analysis of one-dimensional coupled heat and moisture

movements in unsaturated porous media.
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1. INTRODUCTION

The process of simultaneous heat and mois-
turc transfer in porous materials is of interest in a
variety of engineering applications. Typical ap-
plications include the disposals of high level nu-
clear waste and heat cmitting industrial buried
materials, underground cnergy storage system,
buried electric cables, thermal soil remediation,
etc. In all these applications, thermal and hy-
draulic gradients arc thought to be important
factors that should be evaluated because both are
the driving forces that influence the process of
heat and moisture movements in unsaturated
medium. Heat sources can induce a high tem-

perature gradients and lead to significant mois-

ture movement. For example, excessive moisture
movement can cause localized moisture content
depletion, which will give rise to shrinkage cracks
of the geologic material. Thus, better under-
standing of the coupled heat and moisture proc-
ess is required. For this reason, there are a lot of
efforts to examine the coupled heat and mass
tflows in unsaturated porous medium (Philip and
de Vries, 1957; Cassel et al., 1969; Yong et al.,
1990, ctc.). In particular, Philip and de Vries
(1957) formulated a nonlinear hydro-thermo
coupled diffusion equation to govern the mois-
ture movement and heat transfer. Based on this
diffusion equation, much research has been ex-
tensively done. Dempsey (1978) has applied the
Philip and de Vries (1957) model in conjunction



188

with a one-dimensional implicit finite difference
method to study the coupled heat transfer and
moisture movement in an unsaturated soil. A
two-dimensional integrated finite-difference
method which incorporates the Philip and de
Vries (1957) model is presented by Rad-
hakrishna et al. (1984). A number of investiga-
tors have applied finite clement techniques to
two-dimensional problem (Abdel-Hadi and and
Mitchell, 1981; Geraminegad and Saxena, 1986;
Thomas, 1987). However, most studies are con-
centrated on numerical techniques and experi-
ments for the analysis of heat and moisture
movement problem. Little previous efforts have
been made to develop an analytical approach for
solving a nonlinear hydro-thermo coupled diffu-
sion equation. Despite the availability of various
numerical methods for solving such a diffusion
equation, analytical methods should be pursued
for computational efficiency and verification of
the numerical solutions. For example, numerical
methods have the disadvantage of consuming
very long simulation time when the variations of
temperature and moisture profiles have to be
investigated for over a few hundreds years. It
doesn’t matter to analytical methods.

Recently, Basha and Selvadurai (1998) de-
veloped an analytical solution to the problem of
heat-induced moisture movement in the vicinity
of a spherical heat source, but diffusion parame-
ters are assumed to be constant without consid-
ering the variability of those parameters with the
changes of temperature and moisture. This is the
primary motivation for the present study. So, an
attempt is made to derive an approximate ana-
lytical solution of a nonlinear hydro-thermo cou-
pled diffusion equation with variable diffusion
parameters. To this end, we make the dimen-
sionless form of diffusion equation proposed by
Philip and de Vries (1957). 1t is drastically as-

Water Engineering Research, Vol. 2, No. 3, 2001

sumed that the product of first order derivatives
in a dimensionless governing equation has little
influence on the solution of heat and moisture
behavior problem. The validity of this drastic
assumption is demonstrated. Some numerical
simulation is carried out to investigate the ap-
plicability of a derived approximate analytical
solution. In this study, we only focus on
one-dimensional horizontal problem. Even
though one-dimensional analysis is not suffi-
cient to represent regional problem related to
heat-moisture movement, it may be important in
case of local problem. For example, in a labora-
tory test, one-dimensional analysis is needed to
estimate diffusion parameters governing heat
and moisture movement.

The proposed analytical solution may provide a
useful tool in the verification process of the nu-
merical models. Also, the solution can be used for
the analysis of one-dimensional coupled heat and
moisture movements in local unsaturated porous

media.

2. DERIVATION OF ANALYTICAL
SOLUTION

2.1 Governing equation

Philip and de Vries (1957) presented a theory
to describe the process of heat transfer and
moisture transport in a non-deforming porous
medium. Our study is based on this theory. In
this theory, the coupled heat and moisture flows
which are governed by Fourier's law and Darcy’s
law, respectively are described by

o8 oK
or
pCE:V (JVT)'FpL‘V (D(J\ Vg) (]b)

where 6 is the volumetric water content, 7 is
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the temperature, ¢ is the time. D; is the
thermal moisture diffusivity[L*/T], D, is the
diffusivity[L*/T], K, is the
unsaturated hydraulic conductivity[L/T}, ¢ is
the specific heat[L*/T*]. 1 is the thermal
conductivity[ML/T'], p is the density[M/T’],
L, is the latent heat vaporization[L*/T?], and

D,

Uy

moisture

is the isothermal vapor diffusivity[L*/T].

Egs. (1a) and (1b) take the forms of nonlinear
partial differential equations because diffusion
paramcters such as .. D,. A arc function
of 8 and T .To obtain thc solution of a

coupled nonlinear cquation, a considerable
ctfort

Thercfore it is desirable to cxamine a simplified

mathematical would be required.
model. It has been shown that the gravity effects
of third term of RHS in Eg. (la) and the
vaporization cffects of seccond term of RHS in
Eq. (1b) have little influence on the process of
heat and moisture, especially for the cascs
involving localized high temperature (Basha and
1998). We

onc-dimensional horizontal problem. The cou-

Selvadurai, focus on a

pled system of equations then is reduced to
o6
Ot

oT
pe =V (AVT) (2b)
ot

=V (D, VT)+V-(D,V6) (2a)

By using the Eqs. (2a) and (2b), an approximate
analytical solution is derived for one-dimen-

sional movements of moisture and tcmperature.

A
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temperature.

2.2 Approximate analytical solution

Consider an unsaturatcd porous bar with
length L, confined at two cnds A and B. This
is shown in Fig. 1. End A has 6,, 7,(C) and
end B has 6,, T, (C). Under this system, sim-
plified dimensionless forms of one-dimensional
cquations of (2a) and (2b) can be written as

00" . 070 . O°T
. e (3a)
dr 3l ag
P 2R
(Z" :(;T7 (3b)
ar aoc
-0, « I -T
where 6 = 4 = = 2
1 =6 -7
! * A * D
r:f__? c=2, =2, p,=20,
pc L L pc A
. T.-T, D, .
D, =—1—2 "1 When we derive the Egs. (3a)

"T0-0, A
and (3b), a drastic assumption is made. The va-
lidity of the assumption will be discussed in the
following chapter.

The initial and boundary conditions are

T.0

TO0,H=T7T a x=0
T(L.ty=T, at x=1L (4a)
80, 1)=6, at x=0
OL.t)y=6, at x=L (4b)
O(x,0)=06, at t=0
T(x,0)=T7, at t=0 (4c)
B
T..0

Fig. 1. Schematic diagram of an unsaturated porous bar system
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where subscript 0 means the initial value. For
the analytical solutions of Eqs. (3a) and (3b),
integral transforms are used. The space deriva-
tives may be replaced by finite Fourier sine
transform and time derivatives by Laplace
transform. After applying these transformations
and the required procedures, the following solu-
tions can be obtained.

TG0 =0-0)+ YR -y -1l

n=0

sin(nzd’)
(5a)
0 (¢.0=0-0+ ZL{DT ~TyDr ({;(—1)”)
fr %4 1-D,
(e_”zﬂzD;T _“e*nzﬂzr) _e_V’:/TZD;z'
+93(‘ —(—1)”)e’”z”z”ﬁ}in(nﬁg)
(5b)

where #n is the Fourier transform variable,
@, is the non-dimensional initial volumetric
water content, and 7, is the non-dimensional

initial temperature. The detailed solution proce-
dure is given in the Appendix. Equations of (5a)
and (5b) have implicit forms because both sides
are function of ¢ and 7. Thus the solutions
of these equations can be obtained by successive
iterations with the help of Newton-Raphson
technique.

3. VERIFICATION

3.1 Numerical model

A numerical model is established in order to
verify an approximate analytical solution. Finite
difference method is used to solve Eqgs. (2a) and

(2b) numerically. Temporal discretization of Egs.

(2a) and (2b) using a backward Euler method

may be written as
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9”“ _0" n+l A+l n+l1 n+l
T VDY) SV (D) VeT =0
(6a)
ntl _ n
ch—A—T_-V'(An+]VTn+I):0 (6b)
t

where 6" and T" denote the approximate
values at the nth discrete time level (r=1¢"),
At =™ —¢" is the time step, D;"', D;*', and
A" identify thermal moisture diffusivity,
moisture diffusivity, and thermal conductivity
evaluated using 6" and T""', respectively.
D, and D, are functions of 8 and T ,
therefore Eqgs. (62) and (6b) are linearized as
Egs. (7a) and (7b) using the Picard iteration

n+l

scheme. The latest estimates of Dy, Dj™',

and A™' are used to estimate the unknown
values of "' and T

0n+l.m+l _en . .
VI A o
~-V. (Dgﬂ,mveml,mﬂ):o

n+lom+l _ gn
pcr__i_v . (/'Lr”l' m VTn+l. m+1) -0

At
(7b)

where m is the iteration level. These equations

may be rewritten in the following equivalent

forms,
011+1.m+l _9n+1,m
At
—V i D;Hl‘m (VTn+l.m+l _VTnH,m)
—V .D;H»l,m (V6/1+1.n1+l _VHn-H,m)
enJrl,m _9/1 . [
=2 7 4V. Dn+.mVTn+,m +
v (D7 )

V ) (D;H. m VH&H—]. m) = Rg+). m
(8a)
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i+l mel e+l
T -T

p( —V‘ lﬂrl. m (VTn+I. m+l __VTMI. m)

n+l, m n
rm"-T

:_pL —V' (2}14. m VTnH. m ) = R7n+L m

(8b)

where R;™” and R;™" are the residuals of
the discretized equations. The solutions of the
Eqgs. (8a) and (8b) can be obtained by iteration
until  both residuals and the differences
(gt gt ot iy e to zero.
3.2 Comparison of analytical and numerical

solutions

Some simulation of onc-dimensional moisture
and temperature movements is carried out ana-
lytically and numerically. Then, analytical and
numerical computations are compared. The ap-
plicability of an approximated analytical solution
is also discussed.

In this paper, the following linear functions
have been used in order to express the diffusivity
parameters as a function of volumetric water

content and temperature. These relationships are
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(a) Variation of volumetric water content and
temperature along the distance (time = | day)

Fig. 2.
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determined by Yong et al. (1997), which could
be obtained from the experimentally measured
moisture and temperature profiles in a clay ma-
terial with length of L =110 mm.

Dy =(0.1+0.398T +0.120) (mm*/day) (9a)
Dy = (0.00646 +0.003267T +1.546) (mm” C/day)

(9b)
A1 pe=(2504.95+1.137T) (mm?/day) (9¢)

The boundary and initial conditions are given by
6, =005, 6,=04, T,=100C, 7,=18 T,
6,=03, T,=18 C. These values are corre-
sponding to the conditions of experiment con-
ducted by Yong et al. (1997). Computed results
of volumetric water content and temperature
along the distance are presented in Fig. 2, which
in general show a good agreement between the
analytical and numerical solutions. Fig. 2 (a)
shows that an approximate analytical solution
after | day gives an excellent match to the nu-
merical result by FDM. A discrepancy between

analytical and numerical solutions increascs as
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(b) Variation of volumetric water content and
temperature along the distance (time = 5 days)

Comparison of analytical and numerical solutions
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time elapses (time = 5 days). This discrepancy
can reach maximum where a maximum moisture
gradient is found. However, the error induced by
the simplification of governing non-dimension-
alized equation is very small in spite of the
extreme case in which temperature gradient is
severe. These illustrate the capability of an ap-

proximate analytical solution.

4. VALIDITY OF DRASTIC
ASSUMPTION

Extended dimensionless form of Eq. (2a) can
be expressed as Eq. (10).

20" _ 220 0T
ar o3 TPr—>
o¢ od

oc o oc of

left two terms right two terms

(10)

However, the last two terms of RHS in Eq. (10)
are not shown in Eq. (3a). This is due to the dras-
tic assumption that we made when deriving an
analytical solution of a one-dimensional cou-
pled heat and mass problem. It is assumed that
the last two terms of RHS in Eq. (10) are neg-
ligible compared to the first two ones. Under
this assumption we omit the last two terms. To
demonstrate the validity of this drastic assump-
tion, the magnitude of the first two terms and
that of the last two terms of RHS in Eq. (10)
are compared. If the former is much larger than
the latter, we may say that the omitting terms,
which are composed of products of first order
derivatives, have little influence on the solution.
Based on the numerical results, the dimen-
sionless variables of moisture, temperature, and

diffusion parameters along the dimensionless

distance (J(0),T(0).0,(),0.(%)) are calculated

* * Ll *
oD, 08" oDy oT
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and each of those variables is fitted to a polyno-
mial form expressed as Eq. (11).

f(&)y=a+bl+el+dlP+elt 4+ ()

where f is any of dimensionless variables men-

tioned above, and a, b, ¢, d, e are the fitted

cocfficients. The fitted polynomial equations
and derivatives of them are inserted into the first
two terms and the last two terms. Then magni-
tude of the first two terms and that of the last two
terms of Eq. (10) are plotted in Fig. 3. As shown
in Fig. 3, the non-dimensional magnitude of the
first two terms is relatively much larger than that
of the last two terms. This result means that the
product of first order derivatives neglected in the
non-dimensionalized governing equation has
little effect on the solution of heat and moisture
behavior problem.

In similar way, the above procedure is carried
out for Eq. (12) with dimensional variables of

moisture, temperature, diffusion parameters.

o0 a0 3T oDy 00 Dy oT

- = D0 > TP + +

oT ox~ ox? Ox  Ox ox  Ox
(12)

The result is shown in Fig. 4. It is found out that
the difference of magnitude between the first
and the last two terms is insignificant. This sug-
gests that the first two terms and the last two
terms are of the samc order. That is, both play
almost equivalent roles in solution of equation
(12). Consequently, non-dimensionalization of
governing equation has significantly reduced the
effect of non-linearity on the solution.
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5. CONCLUSIONS

Both thermal and hydraulic gradients are
thought to be important factors that should be
evaluated in geo-environmental problems. Thus
a Jot of studies have been done on coupled heat
and mass flows in porous materials by using
numerical methods. However, little previous
cfforts have been made to develop the analytical
solution of a nonlinear hydro-thermo coupled
diffusion equation. Therefore, an attempt is made
to derive an analytical solution in this paper.

An approximate analytical solution of a
nonlinear hydro-thermo coupled diffusion cqua-
tion is derived using non-dimensionalized form
of equation and transformation mcthod. Then
some numerical simulation is carried out to in-
vestigate the applicability of a derived approxi-
mate analytical solution. The resuits show a
good agreement between analytical and numeri-
cal solutions. It is also found out that the product
of first order derivatives neglected in the
non-dimensionalized governing equation  has
little influence on solution of heat and moisture
behavior problem. The proposed approximate
analytical solution may provide a useful tool in the

Non-dimensional magnitude of RHS terms
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Fig. 4. Dimensional magnitude of RHS terms

verification process of the numerical models.
Also, the solution may be used for the analysis of
the coupled heat and moisture movements in un-
saturated porous media.
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APPENDIX

This appendix gives a detailed derivation for
approximate analytical solutions of Eqs. (2a)
and (2b). The procedure is as follows:

[0y =0" (A1)

fAry=7" (A2)
06" 88"

S e (A3)

f\ {al_} = or (A4)
T or or
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2 AF

.f;{f; R L R R

(A5)

oy

o’T . . s e
Sl o V=0T (0,0)— (-1 T (1, 0)]-n’2°T

Y

(A6)

where f.{} is operation of taking the finite
Fourier sine transformation (Churchill, R.V.,
1972) and nis the transform variable. When
boundary conditions (Egs. (4a), (4b)) are in-
serted into equations (AS) and (A6):

B.C; #'(0,0)=1, 6 (L,r)=0, T'(0,7)=1,
T'(,t)=0

2 *

2 {%} =nr—n’z’0" (A7)
2 *

,/;.{aﬁ; }:nn—nzﬂzT“ (A8)
o

are obtained. If the finite Fourier sine transform
of equations (2a) and (2b) are taken and the ex-
pressions given by equations (A3), (Ad), (A7)
and (AS8) are considered, then the following

equations can be obtained:

**

0 . ) . . PRy

(;9 =D,(nx-n"7°0" Y+ D, (nx—n'7’T")
T

(A9)

or =nr-n’r’T" (A10)
or

When the finite Fourier sine transforms of the
initial conditions are taken, equation (4c) be-

come
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%

om0y =2 - )

(ALl)
nr
" T
T (n0)= [1-(-1)") (A12)
nr

Using the Laplace transform, one may write:

v=T (A13)

(Al14)

Aok *
',1 - *k - T
L{(T }sz-T n,0)=pT -2 [1-(-1)"]
nrw

(A15)

A * — *% - ;
L{ce }:p@—@ (17,0):,09—&)—[1*(*1)”]
nir
(A16)

where L{ } is operation of taking the Laplace
transform, p is the Laplace transform variable.

When the Laplace transforms of equations
(A9) and (A10) are taken, and equations
(A13)~(A16) are considered;

o] o — T*
AR 22T = pT =01~ (~1)"] (A17)
14 nmw
Dz[ﬂ~r1znzéj+ I);[ﬂr—vnznsz =
2 p ,
(A18)

*

po -2 -y
nrx

T and @ can be solved from equations (A7)
and (A18) as:

L S . TJ(1~(—|)")
nxip p+nzﬂ'2 n;r(p+nz/r2)

(A19)
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o= L [@Z)— I MD; MD;Y'.:(] ‘(Abni)ﬁ-&*[l—(—l)")
/)+11:/f2D;L P p+n:7r2 p—'rn:rzl nr
:,L{_' IR 2 ! ]

n\ p /)+112/72[);J n;z(l—l),;)bunzzzzl)z, p+112ﬂ2

oali-ar) L L[ ey
n/z(lAD;) \\/Hn}ﬂ:D; [H»II:/I)' J nn p+nz/rzD;
From Laplace transform tables (Churchill, 1972)
the inversion of equations (A19) and (A20) will
yield:

T** = 1_[1 _ efn:f!lr + T“* (] _ (_l)n )e—n:n:r]

¥4
(A21)

*

g :i{l_e et D (er,,-ir‘n;,, e r)
s

nr =D,

_[%_(l_(gﬂ] (e /11/1:1),-1 _e—nl/fw: )+9(‘)( l_(_l)n) e n:,’r:l)f,r}

(A22)

When the inverse finite Fourier sine transform is
applied to equations (A21) and (A22), the re-
sulting equations are

* =z 2 *
T D =(1-0)+ Y AT, d—(-1)")-1
d "ZOM[ 0 (A23)

-nrr
o

¢ sin(nrd)

0 (. t)y=(1-¢)
- L{D;—T(;D;(l—(‘l)”)
—nr 1-D,
(C Wity e nirlc )__ ()—n:zrzn,',r "
0.0 -(-1")e ”**"f’f"]sin( nrl)
(A24)

+

o

If 7,=T,and8,=0,(that is, T, =0, 6, =0)
then equations (A23) and (A24) become
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T"(¢0=0-¢)- 3" " Tsineng) - (A29)
n=0

0 n=01-9)
+i 2 [1 Di)* (e‘"‘"ln’.”—e"Z”")—e"’”ﬂu’.”:lsin(nﬂé') ing, Yonsei University, Seoul 120-749, Korea
w0 T 1 — 0
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Finally, & and T can be obtained from
9*:9—92 T = T-T, .
91 - 92 T -T,




