• Title/Summary/Keyword: new material model

Search Result 1,065, Processing Time 0.03 seconds

A New Algorithm for the Integration of Thermal-Elasto-Plastic Constitutive Equation (열탄소성 구성방정식 적분을 위한 새로운 알고리즘)

  • 이동욱;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1455-1464
    • /
    • 1994
  • A new and efficient algorithm for the integration of the thermal-elasto-plastic constitutive equation is proposed. While it falls into the category of the return mapping method, the algorithm adopts the three point approximation of plastic corrector within one time increment step. The results of its application to a von Mises-type thermal-elasto-plastic model with combined hardening and temperature-dependent material properties show that the accurate iso-error maps are obtained for both angular and radial errors. The accuracy achieved is because the predicted stress increment in a single step calculation follows the exact value closely not only at the end of the step but also through the whole path. Also, the comparison of the computational time for the new and other algorithms shows that the new one is very efficient.

Using element-embedded rebar model in ANSYS for the study of reinforced and prestressed concrete structures

  • Lazzari, Bruna M.;Filho, Americo Campos;Lazzari, Paula M.;Pacheco, Alexandre R.
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.347-356
    • /
    • 2017
  • ANSYS is a software well accepted by professionals and academics, since it provides a variety of finite elements, material constitutive models, and linear and nonlinear analysis of structures in general. For the concrete material, for instance, the software uses an elastoplastic model with the Willam-Warnke surface of rupture (1975). However, this model is only available for finite elements that do not offer the possibility of use of the element-embedded model for rebars, demanding a much larger amount of elements to discretize structures, making numerical solutions less efficient. This study is, therefore, about the development of a computational model using the Finite Element Method via ANSYS platform for nonlinear analysis of reinforced and prestressed concrete beams under plane stress states. The most significant advantage of this implementation is the possibility of using the element-embedded rebar model in ANSYS with its 2D eight-node quadratic element PLANE183 for discretization of the concrete together with element REINF263 for discretization of rebars, stirrups, and cables, making the solutions faster and more efficient. For representation of the constitutive equations of the steel and the concrete, a proposed model was implemented with the help of the UPF customization tool (User Programmable Features) of ANSYS, where new subroutines written in FORTRAN were attached to the main program. The numerical results are compared with experimental values available in the technical literature to validate the proposed model, with satisfactory results being found.

Analysis of quasi-brittle materials using two-dimensional polygon particle assemblies

  • Lee, Jong Seok;Rhie, Yoon Bock;Kim, Ick Hyun
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.713-730
    • /
    • 2003
  • This paper contains the results of the study on the development of fracture and crack propagation in quasi-brittle materials, such as concrete or rocks, using the Discrete Element Method (DEM). A new discrete element numerical model is proposed as the basis for analyzing the inelastic evolution and growth of cracks up to the point of gross material failure. The model is expected to predict the fracture behavior for the quasi-brittle material structure using the elementary aggregate level, the interaction between aggregate materials, and bond cementation. The algorithms generate normal and shear forces between two interfacing blocks and contains two kinds of contact logic, one for connected blocks and the other one for blocks that are not directly connected. The Mohr-Coulomb theory has been used for the fracture limit. In this algorithm the particles are moving based on the connected block logic until the forces increase up to the fracture limit. After passing the limit, the particles are governed by the discrete block logic. In setting up a discrete polygon element model, two dimensional polygons are used to investigate the response of an assembly of different shapes, sizes, and orientations with blocks subjected to simple applied loads. Several examples involving assemblies of particles are presented to show the behavior of the fracture and the failure process.

Hygro-thermo-mechanical bending analysis of FGM plates using a new HSDT

  • Boukhelf, Fouad;Bouiadjra, Mohamed Bachir;Bouremana, Mohammed;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.75-97
    • /
    • 2018
  • In this paper, a novel higher-order shear deformation theory (HSDT) is proposed for the analysis of the hygro-thermo-mechanical behavior of functionally graded (FG) plates resting on elastic foundations. The developed model uses a novel kinematic by considering undetermined integral terms and only four variables are used in this model. The governing equations are deduced based on the principle of virtual work and the number of unknown functions involved is reduced to only four, which is less than the first shear deformation theory (FSDT) and others HSDTs. The Navier-type exact solutions for static analysis of simply supported FG plates subjected to hygro-thermo-mechanical loads are presented. The accuracy and efficiency of the present model is validated by comparing it with various available solutions in the literature. The influences of material properties, temperature, moisture, plate aspect ratio, side-to-thickness ratios and elastic coefficients parameters on deflections and stresses of FG plates are also investigated.

Theoretical Study on Interfacial Stresses at RC Beam Repair-Purpose Overlayed by Latex Modified Concrete (LMC로 덧씌우기 보수된 RC보의 계면응력에 관한 연구)

  • Kim, Hyun-Oh;Kim, Seong-Hwan;Kim, Dong-Ho;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.179-184
    • /
    • 2004
  • Each year, new technological advancements for repair-purpose are being introduced to overlay the old deterioration of RC bridge deck at highway by latex-modified concrete. The days may come when this old problem will be successfully resolved. While the experimental works and researches are very active at both laboratory and field, only a few theoretical studies were performed on interfacial problems, especially on stress distribution and concentration of RC beam overlayed by latex-modified concrete. The repaired and strengthened structures would induce a premature failure due to the stress concentration at the adhesive layer of different material before the design expected failure. This paper investigated and proposed an analytical model for predicting interfacial shear and normal stresses of RC beam repair-purpose overlayed by latex-modified concrete. This would be used for predicting interfacial stresses and preventing premature failure at interfaces. This study modified Smith-Teng method for applying to cementitious repairing material, which was based on a direct governing equation and linear-elastic approach for interfacial normal and shear stresses. The proposed theoretical model was verified using commercial FEA program, LUSAS, in terms of interfacial stresses predicted by the proposed model and calculated by LUSAS.

  • PDF

Seismic performance of the concrete-encased CFST column to RC beam joints: Analytical study

  • Ma, Dan-Yang;Han, Lin-Hai;Zhao, Xiao-Ling;Yang, Wei-Biao
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.533-551
    • /
    • 2020
  • A finite element analysis (FEA) model is established to investigate the concrete-encased concrete-filled steel tubular (CFST) column to reinforced concrete (RC) beam joints under cyclic loading. The feasibility of the FEA model is verified by a set of test results, consisting of the failure modes, the exposed view of connections, the crack distributions and development, and the hysteretic relationships. The full-range analysis is conducted to investigate the stress and strain development process in the composite joint by using this FEA model. The internal force distributions of different components, as well as the deformation distributions, are analyzed under different failure modes. The proposed connections are investigated under dimensional and material parameters, and the proper constructional details of the connections are recommended. Parameters of the beam-column joints, including material strength, confinement factor, reinforcement ratio, diameter of steel tube to sectional width ratio, beam to column linear bending stiffness ratio and beam shear span ratio are evaluated. Furthermore, the key parameters affecting the failure modes and the corresponding parameters ranges are proposed in this paper.

A simple analytical model for free vibration and buckling analysis of orthotropic rectangular plates

  • Sellam, Souad;Draiche, Kada;Tlidji, Youcef;Addou, Farouk Yahia;Benachour, Abdelkader
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.157-174
    • /
    • 2020
  • In the present paper, a simple analytical model is developed based on a new refined parabolic shear deformation theory (RPSDT) for free vibration and buckling analysis of orthotropic rectangular plates with simply supported boundary conditions. The displacement field is simpler than those of other higher-order theories since it is modeled with only two unknowns and accounts for a parabolic distribution of the transverse shear stress through the plate thickness. The governing differential equations related to the present theory are obtained from the principle of virtual work, while the solution of the eigenvalue problem is achieved by assuming a Navier technique in the form of a double trigonometric series that satisfy the edge boundary conditions of the plate. Numerical results are presented and compared with previously published results for orthotropic rectangular plates in order to verify the precision of the proposed analytical model and to assess the impacts of several parameters such as the modulus ratio, the side-to-thickness ratio and the geometric ratio on natural frequencies and critical buckling loads. From these results, it can be concluded that the present computations are in excellent agreement with the other higher-order theories.

Constitutive Parameter Identification of Inelastic Equations Using an Evolutionary Algorithm (진화적 알고리즘을 이용한 비탄성방정식의 구성 파라미터 결정)

  • Lee, Eun-Chul;Lee, Joon-Seong;Hurukawa, Tomonari
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.96-101
    • /
    • 2009
  • This paper presents a method for identifying the parameter set of inelastic constitutive equations, which is based on an Evolutionary Algorithm. The advantage of the method is that appropriate parameters can be identified even when the measured data are subject to considerable errors and the model equations are inaccurate. The design of experiments suited for the parameter identification of a material model by Chaboche under the uniaxial loading and stationary temperature conditions was first considered. Then the parameter set of the model was identified by the proposed method from a set of experimental data. In comparison to those by other methods, the resultant stress-strain curves by the proposed method correlated better to the actual material behaviors.

Numerical Analysis of the Discharge and Luminous Characteristics of a Planar Type Xe Plasma Flat Lamp (대향형 Xe 플라즈마 평판 램프의 방전 및 발광 특성에 관한 수치적 연구)

  • Kim, Hyuk-Hwan;Lee, Won-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.822-833
    • /
    • 2011
  • A Xe plasma flat lamp, which has been noticed as a new eco-friendly LCD (liquid crystal display) backlight, requires the improvement of the luminance and the luminous efficiency although it has several advantages. To improve the performance of a lamp, it is necessary to understand the effects of discharge variables on the luminous characteristics of the lamp. Since it is difficult to diagnose a lamp discharge experimentally, the numerical analysis can be used instead. In this study, the luminous characteristics of a planar type Xe plasma flat lamp were analyzed with the variation of an input voltage and a pulse frequency. The numerical analysis of a lamp discharge was then performed using a RCT (relaxation continuum) model and a LFA (local field approximation) model. The comparison with the experimental results showed that the RCT model is valid for the numerical analysis of the flat lamp. The numerical analysis also showed that the modifications of a high frequency component and a voltage falling rate in the input voltage waveform could improve the luminous characteristics of the lamp.

nBn Based InAs/GaSb Type II Superlattice Detectors with an N-type Barrier Doping for the Long Wave Infrared Detection (InAs/GaSb 제2형 응력 초격자 nBn 장적외선 검출소자 설계, 제작 및 특성평가)

  • Kim, Ha Sul;Lee, Hun;Klein, Brianna;Gautam, Nutan;Plis, Elena A.;Myers, Stephen;Krishna, Sanjay
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.327-334
    • /
    • 2013
  • Long-wave infrared detectors using the type-II InAs/GaSb strained superlattice (T2SL) material system with the nBn structure were designed and fabricated. The band gap energy of the T2SL material was calculated as a function of the thickness of the InAs and GaSb layers by the Kronig-Penney model. Growth of the barrier material ($Al_{0.2}Ga_{0.8}Sb$) incorporated Te doping to reduce the dark current. The full width at half maximum (FWHM) of the $1^{st}$ satellite superlattice peak from the X-ray diffraction was around 45 arcsec. The cutoff wavelength of the fabricated device was ${\sim}10.2{\mu}m$ (0.12 eV) at 80 K while under an applied bias of -1.4 V. The measured activation energy of the device was ~0.128 eV. The dark current density was shown to be $1.0{\times}10^{-2}A/cm^2$ at 80 K and with a bias -1.5 V. The responsivity was 0.58 A/W at $7.5{\mu}m$ at 80 K and with a bias of -1.5 V.