DOI QR코드

DOI QR Code

Numerical Analysis of the Discharge and Luminous Characteristics of a Planar Type Xe Plasma Flat Lamp

대향형 Xe 플라즈마 평판 램프의 방전 및 발광 특성에 관한 수치적 연구

  • Kim, Hyuk-Hwan (Department of Materials Science and Engineering, KAIST) ;
  • Lee, Won-Jong (Department of Materials Science and Engineering, KAIST)
  • Received : 2011.08.02
  • Accepted : 2011.09.18
  • Published : 2011.10.01

Abstract

A Xe plasma flat lamp, which has been noticed as a new eco-friendly LCD (liquid crystal display) backlight, requires the improvement of the luminance and the luminous efficiency although it has several advantages. To improve the performance of a lamp, it is necessary to understand the effects of discharge variables on the luminous characteristics of the lamp. Since it is difficult to diagnose a lamp discharge experimentally, the numerical analysis can be used instead. In this study, the luminous characteristics of a planar type Xe plasma flat lamp were analyzed with the variation of an input voltage and a pulse frequency. The numerical analysis of a lamp discharge was then performed using a RCT (relaxation continuum) model and a LFA (local field approximation) model. The comparison with the experimental results showed that the RCT model is valid for the numerical analysis of the flat lamp. The numerical analysis also showed that the modifications of a high frequency component and a voltage falling rate in the input voltage waveform could improve the luminous characteristics of the lamp.

Keywords

References

  1. H. B. Park, S. E. Lee, G. Y. Kim, Y. D. Lee, and K. C. Choi, J. Display Technol., 2, 60 (2006). https://doi.org/10.1109/JDT.2005.862018
  2. Z. Liu, W. B. Hu, and C. L. Liu, IEEE Trans. Plasma Sci., 38, 2860 (2010). https://doi.org/10.1109/TPS.2010.2064339
  3. H. Kashiwazaki, T. Kajiwara, H. Fujita, and Y. Ohtsu, J. Light & Vis. Env., 34, 10 (2010). https://doi.org/10.2150/jlve.34.10
  4. I. W. Seo, J. C. Jung, B. J. Oh, and K. W. Whang, IEEE Trans. Plasma Sci., 38, 1097 (2010). https://doi.org/10.1109/TPS.2010.2043961
  5. J. Meunier, Ph. Belenguer, and J. P. Boeuf, J. Appl. Phys., 78, 731 (1995). https://doi.org/10.1063/1.360684
  6. J. P. Boeuf, C. Punset, A. Hirech, and H. Doyeux, J. Phys., 7, C4 (1997).
  7. W. J. Chung, B. J. Shin, T. J. Kim, H. S. Bae, J. H. Seo, and K. W. Whang, IEEE Trans. Plasma Sci., 31, 1038 (2003). https://doi.org/10.1109/TPS.2003.818768
  8. T. Shiga, L. C. Pitchford, J. P. Boeuf, and S. Mikoshiba, J. Phys., D36, 512 (2003).
  9. H. B. Park, K. Y. Kim, J. H. Hong, Y. J. Lee, H. Hatanaka, Y. M. Kim, and S. J. Im, SID 2002 Int. Symp. Dig. Tech. Papers (Society for Information Display, 2002) p. 1138.
  10. T. Makabe and N. Nakano, Phys. Rev., A45, 2520 (1992).
  11. M. Kurihara and T. Makabe, IEEE Trans. Plasma Sci., 27, 1372 (1999). https://doi.org/10.1109/27.799815
  12. M. Kurihara and T. Makabe, J. Appl. Phys., 89, 7756 (2001). https://doi.org/10.1063/1.1370360
  13. T. Shiga, S. Mikoshiba, and F. L. Curzon, Rev. Sci. Instrum., 69, 3426 (1998). https://doi.org/10.1063/1.1149110
  14. Y. M. Li, C. L. Chen, and H. B. Hsu, IEEE Trans. Electron Dev., 50, 913 (2003). https://doi.org/10.1109/TED.2003.812092
  15. P. L. G. Ventzek, R. J. Hoekstra, and M. J. Kushner, J. Vac. Sci. Technol., B12, 461 (1994).
  16. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, Cambridge, 1992).
  17. D. L. Scharfetter and H. K. Gummel, IEEE Trans. Electron Dev., 16, 64 (1967).
  18. W. L. Morgan, J. P. Boeuf, and L. C. Pitchford, BOLSIG Boltzmann Solver (freeware): www.siglo-kinema.com /bolsig.htm (1996).
  19. T. Holstein, Phys. Rev., 72, 1212 (1947). https://doi.org/10.1103/PhysRev.72.1212
  20. C. K. Yoon, J. H. Seo, and K. W. Whang, IEEE Trans. Plasma Sci., 28, 1029 (2000). https://doi.org/10.1109/27.887772
  21. K. Tachibana, S. Feng, and T. Sakai, J. Appl. Phys., 88, 4967 (2000). https://doi.org/10.1063/1.1314312
  22. R. P. Mildren, R. J. Carman, and I. S. Falconer, J. Phys., D34, 3378 (2001).
  23. A. Salabas, G. Gousset, and L. L. Alves, Plasma Sources Sci. Technol., 11, 448 (2002). https://doi.org/10.1088/0963-0252/11/4/312
  24. T. Hashimoto and A. Iwata: SID 1999 Int. Symp. Dig. Tech. Papers (Society for Information Display, 1999) p. 540.
  25. L. A. Levin, S. E. Moody, E. L. Klosterman, R. E. Center, and J. J. Ewing, IEEE J. Quantum Electron. 17, 2282 (1981). https://doi.org/10.1109/JQE.1981.1070708
  26. D. J. Eckstrom, H. H. Nakano, D. C. Lorents, T. Rothem, J. A. Betts, M. E. Lainhart, D. A. Dakin, and J. E. Maenchen, J. Appl. Phys., 64, 1679 (1988). https://doi.org/10.1063/1.342474
  27. S. Rauf and M. J. Kushner, J. Appl. Phys., 85, 3460 (1999). https://doi.org/10.1063/1.369703
  28. B. K. Min, H. Y. Choi, S. H. Lee, and H. S. Tae, J. Vac. Sci. Technol., B19, 7 (2001).
  29. M. J. Kushner, J. Appl. Phys., 57, 2486 (1985). https://doi.org/10.1063/1.335434
  30. J. W. Shon, Ph. D. Thesis, University of Illinois at Urbana-Champaign, Urbana-Champaign (1994).
  31. J. H. Kolts and D. W. Setser, J. Chem. Phys., 68, 4848 (1978). https://doi.org/10.1063/1.435638
  32. Gen. Inoue, J. K. Ku, and D. W. Setser, J. Chem. Phys., 81, 5760 (1984). https://doi.org/10.1063/1.447628
  33. Y. Salamero, A. Birot, J. Galy, and P. Millet, J. Chem. Phys., 80, 4774 (1984). https://doi.org/10.1063/1.446550
  34. T. D. Bonifield, F. H. K. Rambow, G. K. Walters, M. V. McCusker, D. C. Lorents, and R. A. Gutcheck, J. Chem. Phys., 72, 2914 (1980). https://doi.org/10.1063/1.439490
  35. J. Galy, K. Aouame, A. Birot, H. Brunet, and P. Millet, J. Phys., B26, 477 (1993).
  36. H. Horiguchi, R. S. F. Chang, and D. W. Setser, J. Chem. Phys., 75, 1207 (1981). https://doi.org/10.1063/1.442169
  37. G. Thronton, E.D. Poliakoff, E. Matthias, S. H. Southworth, R. A. Rosenburg, M. G. White, and D. A. Shirley, J. Chem. Phys., 71, 133 (1979). https://doi.org/10.1063/1.438112