DOI QR코드

DOI QR Code

Constitutive Parameter Identification of Inelastic Equations Using an Evolutionary Algorithm

진화적 알고리즘을 이용한 비탄성방정식의 구성 파라미터 결정

  • 이은철 (경기대학교 대학원 기계공학과) ;
  • 이준성 (경기대학교 기계시스템 디자인공학부) ;
  • 고천지성 (뉴사우스웨일스대학교)
  • Published : 2009.02.25

Abstract

This paper presents a method for identifying the parameter set of inelastic constitutive equations, which is based on an Evolutionary Algorithm. The advantage of the method is that appropriate parameters can be identified even when the measured data are subject to considerable errors and the model equations are inaccurate. The design of experiments suited for the parameter identification of a material model by Chaboche under the uniaxial loading and stationary temperature conditions was first considered. Then the parameter set of the model was identified by the proposed method from a set of experimental data. In comparison to those by other methods, the resultant stress-strain curves by the proposed method correlated better to the actual material behaviors.

본 논문에서는 제안된 진화적 알고리즘을 바탕으로 한 비탄성 구성방정식의 파라미터를 결정하기 위한 방법을 제시한다. 이 방법의 장점은 오차를 갖고 있는 측정된 데이터들이나 모델 방정식들이 부정확하더라도 적절한 파라미터들이 결정되어진다는 것이다. 실험설계는 단축하중과 일정 온도조건하의 샤보쉬 재료모델의 파라미터 결정에 적합하였다. 동시에 모델의 파라미터들은 실험데이터들과 제안한 방법에 의한 값들과 일치하였다. 다른 방법들에 의한 값들과 비교해 본 결과, 제안한 방법에 의한 응력-변형률 선도는 실제적인 재료거동에 비해 좋게 나타났다.

Keywords

References

  1. Thomas B.B., Experimental Research in Evolutionary Computation, Springer Berlin Heidelberg, 2006
  2. Chaboche, J,L., 'Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity,' Int. Journal of Plasticity, Vol. 5, pp. 247-254, 1989 https://doi.org/10.1016/0749-6419(89)90015-6
  3. E. Mazza, O. Papes, M.B. Rubin, S.R. Bodner, 'Nonlinear Elastic-Viscoplastic Constitutive Equations for Aging Facial Tissues,' Biomechanics and Modeling in Mechanobiology, Vol. 4, No. 2-3, pp. 178-189, 2005 https://doi.org/10.1007/s10237-005-0074-y
  4. Yu.V. Nemirovskii and A.P. Yankovskii, 'Viscoplastic Deformation of Reinforced Plates with Varing Thickness Under Explosive Loads,' International Applied Mechanics, Vol. 44, No.2, pp. 188-199, 2008 https://doi.org/10.1007/s10778-008-0030-5
  5. Cailletaud, G. and Pilvin, P., 'Identification and Inverse Problem Related to Material Behavior,' Inverse Problems in Engineering Mechanics, pp. 79-86, 1994
  6. Baumeister, L. Stable Solution of Inverse Problems, Vieweg, Braunschweig, 2007
  7. Holland, J,R., Adaptation in Natural and Artificial Systems, The University of Michigan Ann Arbor, MI, 1975
  8. Fogel, L.J. Oweens, A.J. and Walsh, M.J., Artificial Intelligence through Simulated Evolution, NewYork, Willey, 1996
  9. Rechenberg, I., Evolutionstrtegie: Optimierung Tchnischer Systeme Nach Prinzioien der Boiogischen Evolution, Stuttgart, Frommann-Holzboog, 1983
  10. Hoffmeister, F. and Back, T., 'Genetic Algorithms and Evolution Strategies: Similarities and Differences,' Technical Report, University of Dortmund, Germany, 1992
  11. J.S. YC. Lee and T. Furukawa, 'Inelastic Constitutive Modeling for Viscoplasticity Using Neural Networks,' J. of Korean Institute of Ingelligent Systems, Vol. 15, No.2, pp, 251-256, 2005 https://doi.org/10.5391/JKIIS.2005.15.2.251
  12. T. Furukawa et al., 'Evolutionary Algorithms for Multirnodal Function Optimization Problems,' 81st JSME Annual Meeting, pp. 140-142, 2004
  13. Goldberg, D., Genetic Algorithms in Search, Optimization and Machine Learning, Addison, Wesley, 1999
  14. Baker, J.E. 'Adaptive Selection Methods for Genetic Algorithms,' Proc. of the 11st Int. Conference on Genetic Algorithms and Their Applications, pp. 112-120, 1995
  15. IMSL, IMSL User's manual: FORTRAN Subroutines hI' Mathematical Applications, 1998