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Constitutive Parameter Identification of Inelastic Equations
Using an Evolutionary Algorithm
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Abstract

This paper presents a method for identifying the parameter set of inelastic constitutive equations, which is based on
an Evolutionary Algorithm. The advantage of the method is that appropriate parameters can be identified even when
the measured data are subject to considerable errors and the model equations are inaccurate. The design of
experiments suited for the parameter identification of a material model by Chaboche under the uniaxial loading and
stationary temperature conditions was first considered. Then the parameter set of the model was identified by the
proposed method from a set of experimental data. In comparison to those by other methods, the resultant stress—strain
curves by the proposed method correlated better to the actual material behaviors.
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1. = easy if the model is complex. In addition, the process
may yield significant errors due to the model approx-
imation, particularly when the parameter space is
high-dimension.

On the other hand, the advance of computer harware
has increased the popularity of an approach where all

the parameters are identified simultaneously and, most

A variety of theoretical models to describe a wide
range of viscoplastic behaviors of metallic materials
have been proposed and discussed in the referenced lit-
erature [1-3]. Viscoplastic constitutive equations derived
from these theories involve many parameters, which

significantly influence the behaviors of the constitutive
equations. Appropriate parameters must be determined
accordingly such that the accurate behaviors of materi—
als can be expressed.

Every constitutive equations has its own method for
the parameter identification. In conventional approaches,
the model of interest is first approximated and its pa-
rameters are identified sequentially through the curve
fitting approach [4]. However, the determination of its
process is problem-dependent, and thus may not be
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commonly, optimization methods are used to find the
parameter set by adjusting them until they provide the
best agreement between the measwred data and the
computed model response. As a result, a number of cal-
culus-based optimization techniques were proposed and
incorporated to solve this optimization problem [5].
These techniques, however, can fail in the actual sit-
uation, for example, when the measured data are noisy
and the model equations are inaccurate, since they can
cause the objective function to be complex such as
nonconvex and multimodal. These techniques are thus
practically useful only if some regularization technique
[6] is incorporated properly.

On the other hand, Evolutionary Algorithms(EAs),
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which have come to represent Genetic Algorithms
{(GAs) [7], Evolution Programming [8], Evolution
Strategies [9] and their recombined algorithms [10],
have appeared as robust optimization techniques in the
last frew decades. EAs are based on the collective
learning process within a population of individuals, each
of which represents a search point in the space of po-
tential sohutions to a given problem. Each of these al

gorithms has clearly demonstrated its capability to yield
good approximate solutions even in case of complicated
multimodal, discontinuous, non-differentiable, and even
noisy or moving rsponse surface optimization problems.
The popularity of the algorithms is primarily due to
their probabilistic but efficient nature. In their compar-
ison of the EAs, the authors previously showed that the
algorithms having continuous individuals tend to con-
verge faster for continuous search space problems,
which is the subject of the paper, than the algorithms
with discrete individuals.

In this paper, we therefore propose to use an EA
with continuous individuals for identifying the parame-
ter set of inelastic constitutive equations. The advant-
age of the proposed method is that stable parameters
can be identified even in illposed situations. The EA
described in this paper was proposed by the authors
and their previous results show that the algorithm can
be used as a robust optimization method effectively for
a variety of complex continuous search space problems.

2. Inelastic Constitutive Equations

In general, constitutive relations are given in differ
ential form for the sfrain ¢, and a set of ( internal
variables (€ R and, typically, have the following
form:

(1)

€ =0k, 0,6,6 .0),

(2

5:2(9,&,0,6,5,,..).

the and temperature
respectively and k& R” presents a vector 7 material
parameters. The following initial conditions are given
for their direct analysis:

where o and & are stress

3)
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CChaboche’s viscoplastic model, for instance, is ca-
pable of describing cyclic hardening and softening be-
haviors with the yielding surface and appears to be ca—
pable of modeling a wide range of inelastic material be-
havior characteristics. Its formation under the uniaxial
loading and stationary temperature conditions is given
by

&y

o= Fe", (5)
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where state variables o, ¢°, €°, Y and R are the uniaxial
stress, the uniaxial strain, the uniaxial inelastic strain,
the uniaxial back stress and the isotropic hardening
variable respectively, and the vector k'=[K, n, H, D, h,
d, El represents the material parameters. The notation
<> in equation (7) is zero if the vale inside is
negative. Initial conditions for the direct analysis of the
model are given by equations (3), (10) and (11).

Vo= Y

R}t:O: R,

In the cyclic loading test, no external force is pro-
vided initially (ef=o =0, Yl-o =0), and thus parameters,
K, n, H, D, h, d and RO must be determined to describe
the performance of a specific material.

(10)
(an

3. Evolutionary Algorithm for Continuous
Search Space

EEAs are probabilistic optimization algorithms based
on the model of natural evolution, and the algorithms
has clearly demonstrated their capability to create good
approximate solutions in complex optimization problems.
The popularity of the algorithms is due to the follow-
ing characteristics:

* less possibility to converge to a local minimum as
the search starts from a number of points,
« compatibility with the parallel computer,
» robustness since only objective function in- £ o -
mation is required.
» capability to find a solution in broad search space
effectively through probabilistic operations.
Fig. 1 shows the fundamental structure of EAs. First,
a population of individuals, each represented by a vec-
tor, is initially (generation t=0) generated at random,
ie.,

P ={dl, .2l € X7, (12)

where MNEN represents the population size. The pop-
ulation then evolves towards better regions of the
search space by means of randomized processes of re-
combination, mutation operator is not implemented in
some algorithms. In the recombination operator r: Xt s
XY N parental individuals breed x(€N) offspring in-
dividuals by combining part of information from paren-
tal individuals. The mutation m: X*® —X* forms new in-
dividuals by making large alterations with small possi-
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bility to the offspring individuals regardless of their in—
heritant information. With the evaluation of fitness for
all the individuals, the selection operator s: X*UX*™ —
X*, X favorably selects individuals of higher fitness to
produce more often than those of lower fitness. These
reproductive operations form one generation of the evo-
lutionary process, which corresponds to one iteration in
the algorithm, and the iteration is repeated until a given
terminal criterion is satisfied.

= )

Initialize P (t);

t=t+ 1

do
Recombinate P (t);
Mutate P (1);
Evaluate P (1);
Select P ();

\While terminal condition is not satisfied /

Fig. 1 Fundamental structure of evolutionary algorithms

Each EA consists of either binary or real individuals.
As it is reported that the EAs whose individuals are of
the continuous real vector form can search more rapidly
and effectively than those with discontinuous binary in—
dividuals become of interest in the paper accordingly. In
this case, the population at generation t is given by

pPi= {;1,"1, s u&} e X (13)

The EA proposed by the authors is presented in this
paper as an example of such algorithms. The advantage
of this algorithm 1is its simple operations, promising
performance from the authors previous research [11],
and compatibility with GENESIS, ver. 6 [12], which is
one of the most popular GAs software. In this algo-
rithm, recombination forms two offspring individuals
from two randomly-selected parental individuals z!, and

', according to the following scheme:

rla o) =0—p) o2+«
{r(a PO i 2 (14)

F ey a) = v gt (1 ) -
where r: X* —X_. The coefficient i/; is defined by the
normal distribution with mean 0 and standard deviation

dg:
,u: = Mo, U?;J)- (15)

The standard deviation can be self-adaptive (variable
with respect to t) or constant. The self-adaptive strat—
egy has been reported to make the convergence rate
required for each generation faster at the expense of the
computation time and vice versa. The mutation is not
incorporated in the algorithm since the recombination
can allow individuals to make large alternations when
the coefficient i/; is large. The evaluation of the fitness

98

is most commonly conducted with a linear scaling,
which takes into account the best individual of the pop—
ulation:

& (') = max {¢(z!) ' EP'}—o(z)). 16)

As for selection, the proportional selection [13] and
ranking selection [14] are available in the software. In
the proportional selection, the reproduction probabilities
of individuals ps : X —I[0, 1] are given by their relative
fitness,

pla)= 5 — - a”n

4. Parameter Identification of Inelastic
Constitutive Equations

4.1 Formulation for Parameter Identification of
Chaboche’s Model

There have been seven parameters to be determined
for Chaboche’s model described in section 2. Let the
parameter set x'=[K, n, H, D, h, d, Rol, and represent
the constitutive equations (5)~(9) with strain ¢ as the
input variable with respect to time and stress ¢ as the
output variable in the following form:

o = w(x, g), (18)

where y: R’ x R — R. If m pairs of stress—strain data
(o, '], ..[on", en]} are used to determine the pa-
rameter set, then the optimization problem to be for-
mulated according to section 3 is:

m

minzlk'i(aj—'u")(.z',ej))Q7 (19)

i=1

where k; represents a weighting factor.

4.2 Uniqueness of Solution

Before the actual parameter identification is con-
ducted, we must confirm that the stress—strain data ob-
tained from some experiments can uniquely determine
the parameter set when the model responses and equa-
tions are not subject to errors. Fig. 2 illustrate the con-
figuration of a typical cyclic loading test where the
strain rate is constant. The design of a suitable set of
experiments was investigated stepwise through the fol-
lowing three test cases:

Case 1: Tensile behavior (m=mr)

Case HO: I+ Cyclic hysteresis behavior
(m=mr+me).

Case II: O with different strain rates
(m=mp(mr+rme)).
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Fig. 2 Cyclic loading test
The vproposed method was tested with the

stress-strain data created from the parameter set x = [
50, 3, 5000, 100, 300, 50, 0.6]. This parameter set, there-
fore, must be determined uniquely form the
stress—strain data. Table 1 lists the number of cycles,
the strain range, strain rate and the number of the
stress-strain data used in the tests. The data of the
tensile behavior (m:=9) were obtained every 0.004%
strain increment, while the data of the cyclic hysteresis
behavior (me=10) were obtained at ¢ = & for all
cycles. In the test Case I, cyclic hysteresis behavior
with two strain rates was used {m,;=2}. Internal param-
eters selected for the EA are listed in Table 2. The
standard deviation was set to be constant for simplicity.

Table 1 Numerical example of uniqueness test

a?jx lel %/s [Material behavior| m |[mT|mC
Case 1 | 036 | 80x10" Tensile 9190|0
Case T | 036 | 80w | Lensile = Cyelich gl o | g

Joading

036 | 80x10° [e“"“ffi C&ﬂé‘”llc 19 910
Case I - ——if

036 | gox1o! | Tensile - Cveliel gl g1y

’ ’ loading T

Table 2 Parameters for the evolutionary algorithm

Population size ! o0

Standard deviation 0.5 (constant)

3

1.0

Generation gap

Scaling window

The objective function values of Case 1 -1 vs. gen—
erations are shown in Fig. 3 respectively. It can be first
seen that the value of the objective function success—
fully converged close to zero for all the cases.
Parameters tdentified in all the cases arc listed in Table
3 in comparison to the exact solution.

Objeetive function value

0.1

\ .

0 500 1000 1500 2

2500 3000
Generations

Fig. 3 Objective function values vs. generation

Table 3 Parameters identified in the uniqueness test

K I H D h d R
Solution | 50 3 5000 | 100 | 300 | 06 | 30
Case 1 | 983 | 246 | 4729 90 | 230 | 1.5 | 382
Case I | 988 | 1.83 | 5196 | 105 | 294 | 053 | 52.5
Case II | 49.2 | 2.97 | 5002 | 101 | 311 | 0.67 | 50.7
200
Reference points  »
o Cpsimrons -
100
R
)
100
-156
200
-0.04 003 002 -001 0 001 0Oz 003 004

Fig. 4 Comparison between reference points and
estimated curve for Case |

Tig. 4 shows the curves of the tensile behavior and
the 10th cvelic hysteresis behavior created from the pa
rameter set identified. The points of the tensile behavior
in the figure, termed reference points, were used to find
the parameter set and the points of the 10th cyclic
loading behavior, all derived from the exact solution, are
also shown as checking data. Clearly, the checking data
have some distance from the curve although the curve
coincides with the reference data. Table 3 shows that
only values of H and D are simiar to the exact
solution. The fact that the resultant objective function
value is close to zero indicates that the solution is not
unique. Fig. 5 shows the result fo the Case H. The
curve created 1s well along the reference points of both
the tensile and cvelic loading behaviors. However, Table
3 indicates that parameters A and n were not simular to
the exact solution Shown in Fig. 6 are the results of
Case WM. Providing different strain rates, all the param:
eter set individual almost coincided with the exact sol
ution, implying that the solution
determined.

was  uniquely
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Reference points  *
150 + Checking points +
Curve created ——

Uniaxial stress MPa

-150

=200
0.04 -003 -002 -001 0 001 002 003 004
Uniaxial strain %
Fig. 5 Comparison between reference points and
estimated curve for Case II

200

Reference points  +
150 }  Checking points +
Curve created ——

100
50

0 W

-50

Uniaxial stress MPa

-100

-150

-200
-0.04 -0.03 -0.02 -0.01 0 001 002 003 004
Uniaxial strain %
Fig. 6 Comparison between reference points and
estimated curve for Case III

4.3 ldentification under Model and Measurement
Errors

In this section, the actual experimental data of 2
1/4Cr-1Mo Steel were used to investigate the capability
of the proposed method. Parameters were identified with
two other methods for comparison; one is a conven-—
tional stepwise technique and the other is a technique
where a gradient-based optimization method [15] was
used to minimize the objective function Eq. (20). In
Hishida's technique, parameters K, n, H and D are first
determined by means of the least square method after
the constitutive law is simplified by letting the yield
stress R be constant. Parameters A, d and Ry are then
determined in the second step.

Table 4 lists the resultant mean error value of each
technique, which is defined as

i=21|[0¢ —¥(z, ¢ )/o; | ©20)

?

™ |
it

m

together with the values of the initial parameter set.
Note here that the initial parameter set for the EA is no
described in the table as the initial parameter set has
little influence on the performance of the EA by the
fact that the EA starts with many randomly selected
parameter sets. Curves with different strain rates, cre-
ated from the proposed method, are shown in Fig. 7.

100

Experimental data with strain rate 0.0019/s, which
were not used for the identification, and their corre-
sponding curve created are also shown in the figure to
show the appropriateness of the parameter set
identified.

Table 4 Initial parameter set and resultant mean error

Initial parameter set Mean error
K[n]| H [DIh|d[R| %

Proposed

Method 67

Gradient-based |200] 5]20,000|300/100/5 | O 6.7

technique 50| 5]20,000[300{100(5 | O o0

Stepwise
Method 50 20,000 [300(100|5 | O 10.8

ol

As shown in the table, the parameter set identified
with the gradient-based technique from the initial par-
meter set x'= [200, 5, 20000, 300, 100, 5, 0] was almost
identical to that with the proposed method. However,
the cost functional by the gradient-based technique di-
verged when the initial parameter set was xT= [50, 5,
20000, 300, 100, 5, 0]. Clearly this indicates that the
successful performance of the technique largely depends
on the initial parameter set to be chosen. The stepwise
technique could successfully find a stable parameter set
even when a different initial parameter set was
selected. However, the technique left a larger mean er—
ror than did the proposed method. These results clearly
indicated that the proposed technique is adequate for
finding a parameter set which well describes the actual
material behavior.

300 ——

250 1

200 |

150

Stress MPa

100 Experimental data 0.5 %/s °
0.01 %/s  ~

0.001 %/s =

0.0001 %fs =

Created curve 0.5 %/s
0.01 %/s -

s0 | 0.001 %fs -
0.0001 %/s —-

0

4] 02 04 06 038 1 1.2 1.4 1.6 1.8 2
Strain %
Fig. 7 Computed material curves with different strain
rates
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6. Conclusions

A method for identifying the parameter set of in-
elastic constitutive equations, which is based on an EA,
has been proposed. The proposed method was tested for
the parameter identification of Chaboche’s model under
the uniaxial loading and stationary temperature con-
ditions, and a good approximate solution was obtained.
The results of the test, compared to those by other
techniques, indicate that the method is suitable for pa-
rameter identification of inelastic constitutive equations
due to its robust nature.
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