DOI QR코드

DOI QR Code

nBn Based InAs/GaSb Type II Superlattice Detectors with an N-type Barrier Doping for the Long Wave Infrared Detection

InAs/GaSb 제2형 응력 초격자 nBn 장적외선 검출소자 설계, 제작 및 특성평가

  • Kim, Ha Sul (Department of Physics, Chonnam National University) ;
  • Lee, Hun (Department of Physics, Chonnam National University) ;
  • Klein, Brianna (Center for High Technology Materials, University of New Mexico) ;
  • Gautam, Nutan (Center for High Technology Materials, University of New Mexico) ;
  • Plis, Elena A. (Center for High Technology Materials, University of New Mexico) ;
  • Myers, Stephen (Center for High Technology Materials, University of New Mexico) ;
  • Krishna, Sanjay (Center for High Technology Materials, University of New Mexico)
  • 김하술 (전남대학교 물리학과) ;
  • 이훈 (전남대학교 물리학과) ;
  • ;
  • ;
  • ;
  • ;
  • Received : 2013.10.16
  • Accepted : 2013.11.06
  • Published : 2013.11.30

Abstract

Long-wave infrared detectors using the type-II InAs/GaSb strained superlattice (T2SL) material system with the nBn structure were designed and fabricated. The band gap energy of the T2SL material was calculated as a function of the thickness of the InAs and GaSb layers by the Kronig-Penney model. Growth of the barrier material ($Al_{0.2}Ga_{0.8}Sb$) incorporated Te doping to reduce the dark current. The full width at half maximum (FWHM) of the $1^{st}$ satellite superlattice peak from the X-ray diffraction was around 45 arcsec. The cutoff wavelength of the fabricated device was ${\sim}10.2{\mu}m$ (0.12 eV) at 80 K while under an applied bias of -1.4 V. The measured activation energy of the device was ~0.128 eV. The dark current density was shown to be $1.0{\times}10^{-2}A/cm^2$ at 80 K and with a bias -1.5 V. The responsivity was 0.58 A/W at $7.5{\mu}m$ at 80 K and with a bias of -1.5 V.

InAs/GaSb 제2형 응력 초격자(strained layer type II superlattice, T2SL)을 이용한 nBn 구조 장적외선 검출소자의 설계 및 제작을 하였다. InAs와 GaSb 두께에 따른 T2SL 구조의 장적외선 밴드갭 에너지를 Kronig-Penney 모델을 이용하여 계산하였다. 소자의 암전류 밀도를 줄이기 위해서, nBn 구조에서 장벽층인 $Al_{0.2}Ga_{0.8}Sb$ 성장 중에 Te 보상도핑(compansated doping)을 하였다. 온도(T) 80 K 및 인가전압($V_b$) -1.5 V에서, 반응스펙트럼 측정을 통한 소자의 차단파장은 ${\sim}10.2{\mu}m$ (~0.122 eV)로 나타났다. 또한 온도 변화에 따른 암전류 측정으로부터 도출된 활성화 에너지는 0.128 eV로 계산 되었다. T=80 K 및 $V_b$=-1.5 V에서 암전류는 $1.0{\times}10^{-2}A/cm^2$으로 측정되었다. 흑체복사 적외선 광원을 이용한 반응도(Responsivity)는 소자 온도 80 K 및 인가전압 -1.5 V의 조건에서 0.58 A/W로 측정되었다.

Keywords

References

  1. A. Rogalski, Infrared Physics & Technology 43, 187 (2002). https://doi.org/10.1016/S1350-4495(02)00140-8
  2. A. Barve, J. Shao, Y. D. Sharma, T. E. Vandervelde, K. Sankalp, S. J. Lee, S. K. Noh, and S. Krishna, Ieee Journal of Quantum Electronics 46, 1105 (2010). https://doi.org/10.1109/JQE.2010.2043789
  3. G. A. Sai-Halaz, R. Tu, and L. Esaki, Appl. Phys. Lett. 30, 651 (1977). https://doi.org/10.1063/1.89273
  4. J. O. Kim, H. W. Shin, J. W. CHoe, S. J. Lee, C. S. Kim, and S. K. Noh, J. Korean Vac. Soc. 18, 245 (2009). https://doi.org/10.5757/JKVS.2009.18.4.245
  5. S. J. Lee, S. K. Noh, S. H. Bae, and H. Jung, J. Korean Vac. Soc. 20, 22 (2011). https://doi.org/10.5757/JKVS.2011.20.1.022
  6. E. R. Youngblade, J. R. Meyer, C. A. Hoffman, F. J. Bartoli, C. H. Grein, P.M. Young, H. Ehrenreich, R. H. Miles, and D. H. Chow, Appl. Phys. Lett. 64, 3160 (1994). https://doi.org/10.1063/1.111325
  7. B. M. Nguyen, G. Chen, M. A. Hoang, and M. Razeghi, IEEE Journal of Quantum Electronics 47, 686 (2011). https://doi.org/10.1109/JQE.2010.2103049
  8. N. Gautam, M. Naydenkov, S. Myers, A. V. Barve, E. Plis, T. Rotter, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 98, 121106 (2011). https://doi.org/10.1063/1.3570687
  9. P. Y. Delaunay, B. M. Nguyen, D. Hoffman, E. K. Huang, and M. Razeghi, IEEE Journal of Quantum Electronics 45, (2009).
  10. B. M. Nguyen1, D. Hoffman1, P. Y. Delaunay1, E. K. W. Huang1, M. Razeghi1, and J. Pellegrino, Appl. Phys. Lett. 93, 163502 (2008). https://doi.org/10.1063/1.3005196
  11. S. Maimon and G. W. Wicks, Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  12. J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 043514 (2007). https://doi.org/10.1063/1.2760153
  13. H. S. Kim, E. Plis, J. B. Rodriguez, G. D. Bishop, Y. D. Sharma, L. R. Dawson, S. Krishna, J. Bundas, R. Cook, D. Burrows, R. Dennis, K. Patnaude, A. Reisinger, and M. Sundaram, Appl. Phys. Lett. 92, 183502 (2008). https://doi.org/10.1063/1.2920764
  14. A. Khoshakhlagh, J. B. Rodriguez, E. Plis, G. D. Bishop, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 263504 (2007). https://doi.org/10.1063/1.2824819
  15. S. Myers, E. Plis, A. Khoshakhlagh, H. S. Kim, Y. Sharma, R. Dawson, S. Krishna, and A. Gin, Appl. Phys. Lett. 95, 121110 (2009). https://doi.org/10.1063/1.3230069
  16. H. C. H. Grein, M. E. Flatte, H. Ehrenreich, and R. H. Mile, J. Appl. Phys. 77, 4156 (1995). https://doi.org/10.1063/1.359528
  17. B. H. Hong, S. I. Rybchenko, I. E. Itskevich, and S. K. Haywood, Physical Review B 79, 165323 (2009). https://doi.org/10.1103/PhysRevB.79.165323
  18. R. Rehm, J. Schmitz, L. Kirste, and M. Walther, Infrared Physics & Technology 61, 129 (2013). https://doi.org/10.1016/j.infrared.2013.07.014