• 제목/요약/키워드: network storage

Search Result 1,074, Processing Time 0.027 seconds

Technical analysis of Cloud Storage for Cloud Computing (클라우드 컴퓨팅을 위한 클라우드 스토리지 기술 분석)

  • Park, Jeong-Su;Bae, Yu-Mi;Jung, Sung-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1129-1137
    • /
    • 2013
  • Cloud storage system that cloud computing providers provides large amounts of data storage and processing of cloud computing is a key component. Large vendors (such as Facebook, YouTube, Google) in the mass sending of data through the network quickly and easily share photos, videos, documents, etc. from heterogeneous devices, such as tablets, smartphones, and the data that is stored in the cloud storage using was approached. At time, growth and development of the globally data, the cloud storage business model emerging is getting. Analysis new network storage cloud storage services concepts and technologies, including data manipulation, storage virtualization, data replication and duplication, security, cloud computing core.

Implementation of Cloud-Based Virtual Laboratory using SOI and CIMP on Virtual Machines

  • Ferdiansyah, Doddy;Hwang, Mintae
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.16-21
    • /
    • 2022
  • In this research, we create a network infrastructure based on a service-oriented infrastructure (SOI) for the virtualization technology and integrate it with a cloud technology that applies the cloud integration management platform (CIMP) concept. In CIMP, the server and storage will be separated. The server will be adopted for virtualization while the storage will be used by students and teachers to store data. As long they save their data in the storage module, every time, everywhere, and on every device, they can access their data. This research will implement the design of the network infrastructure and be applied to the remote practical learning system in the laboratory. Students and teachers will ultimately adopt this network infrastructure for remote practice using their respective devices without physically meeting in the laboratory. In the future, if the implementation phase is successful, then in addition to laboratory environments, it can be implemented in all learning activities at our campus.

Optimal Design of Batch-Storage Network (회분식 공정-저장조 그물망 구조의 최적설계)

  • 이경범;이의수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.802-810
    • /
    • 1998
  • The purpose of this study is to find the analytic solution of determining the optimal capacity of processes and storages to meet the product demand. Recent trend to reduce product delivery time and to provide high quality product to customer requires the increasing capacity of storage facilities. However, the cost of constructing and operating storage facilities is becoming substantial because of increasing land value, environmental and safety concern. Therefore, reasonable decision making about the capacity of processes and storages is important subject for industries. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ(Economic Order Quantity) model, trimmed with practical experience but the unrealistic assumption of EOQ model is not suitable for the chemical plant design with highly interlinked processes and storages. This study, a first systematic attempt for this subject, clearly overcomes the limitation of classical lot sizing method. The superstructure of the plant consists of the network of serially and/or parallelly interlinked processes and storages. A novel production and inventory analysis method, PSW(Periodic Square Wave) model, is applied. The objective function of optimization is minimizing the total cost composed of setup and inventory holding cost. The advantage of PSW model comes from the fact that the model provide a set of simple analytic solution in spite of realistic description of material flow between process and storage. The resulting simple analytic solution can greatly enhance the proper and quick investment decision for the preliminary plant design confronting diverse economic situation.

  • PDF

Infrared and visible image fusion based on Laplacian pyramid and generative adversarial network

  • Wang, Juan;Ke, Cong;Wu, Minghu;Liu, Min;Zeng, Chunyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1761-1777
    • /
    • 2021
  • An image with infrared features and visible details is obtained by processing infrared and visible images. In this paper, a fusion method based on Laplacian pyramid and generative adversarial network is proposed to obtain high quality fusion images, termed as Laplacian-GAN. Firstly, the base and detail layers are obtained by decomposing the source images. Secondly, we utilize the Laplacian pyramid-based method to fuse these base layers to obtain more information of the base layer. Thirdly, the detail part is fused by a generative adversarial network. In addition, generative adversarial network avoids the manual design complicated fusion rules. Finally, the fused base layer and fused detail layer are reconstructed to obtain the fused image. Experimental results demonstrate that the proposed method can obtain state-of-the-art fusion performance in both visual quality and objective assessment. In terms of visual observation, the fusion image obtained by Laplacian-GAN algorithm in this paper is clearer in detail. At the same time, in the six metrics of MI, AG, EI, MS_SSIM, Qabf and SCD, the algorithm presented in this paper has improved by 0.62%, 7.10%, 14.53%, 12.18%, 34.33% and 12.23%, respectively, compared with the best of the other three algorithms.

Network-Storage Streaming Accelerator Using Fibre Channel (광채널 기반의 네트워크-스토리지 스트리밍 가속 장치)

  • Sok, Song-Woo;Kim, Hag-Young;Lee, Cheol-Hun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.767-768
    • /
    • 2008
  • Fibre channel based Network-Storage Streaming Accelerator is implemented in this paper. By using Fibre Channel as interface for storage device and sharing storage device among the accelerators, waste of storage space is eliminated. And By using Multi link of Fibre Channels, the load of I/O operations can be distributed over all available links and I/O operations can be conducted even if some links were failed.

  • PDF

A Survey on Cloud Storage System Security via Encryption Mechanisms

  • Alsuwat, Wejdan;Alsuwat, Hatim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.181-186
    • /
    • 2022
  • Cloud computing is the latest approach that is developed for reducing the storage of space to store the data and helps the quick sharing of the data. An increase in the cloud computing users is observed that is also making the users be prone to hacker's attacks. To increase the efficiency of cloud storage encryption mechanisms are used. The encryption techniques that are discussed in this survey paper are searchable encryption, attribute-based, Identity-based encryption, homomorphic encryption, and cloud DES algorithms. There are several limitations and disadvantages of each of the given techniques and they are discussed in this survey paper. Techniques are found to be effective and they can increase the security of cloud storage systems.

Optimal Design Of Batch-Storage Network with Financial Transactions and Cash Flows (현금흐름을 포함하는 회분식 공정-저장조 망구조의 최적설계)

  • ;Lee, Euy-Soo;Lee, In-Beom;Yi, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.956-962
    • /
    • 2005
  • This paper presents an integrated analysis of production and financing decisions. We assume that a cash storage unit is installed to manage the cash flows related with production activities such as raw material procurement, process operating setup, Inventory holding cost and finished product sales. Temporarily financial investments are allowed for more profit. The production plant is modeled by the Batch-Storage Network with Recycle Streams in Yi and Reklaitis (2003). The objective function of the optimization is minimizing the opportunity costs of annualized capital investment and cash/material inventory while maximizing stockholder's benefit. No depletion of all the material and cash storage units is major constraints of the optimization. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the cash and material inventory holdups. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two subproblems and analytical lot sizing equations under a mild assumption about the cash flow pattern of stockholder's dividend. The first subproblem is a separable concave minimization network flow problem whose solution yields the average material flow rates through the networks. The second subproblem determines the decisions about financial Investment. Finally, production and financial transaction lot sizes and startup times can be determined by analytical expressions as far as the average flow rates are calculated. The optimal production lot and storage sizes considering financial factors are smaller than those without such consideration. An illustrative example is presented to demonstrate the results obtainable using this approach.

A Novel Redundant Data Storage Algorithm Based on Minimum Spanning Tree and Quasi-randomized Matrix

  • Wang, Jun;Yi, Qiong;Chen, Yunfei;Wang, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.227-247
    • /
    • 2018
  • For intermittently connected wireless sensor networks deployed in hash environments, sensor nodes may fail due to internal or external reasons at any time. In the process of data collection and recovery, we need to speed up as much as possible so that all the sensory data can be restored by accessing as few survivors as possible. In this paper a novel redundant data storage algorithm based on minimum spanning tree and quasi-randomized matrix-QRNCDS is proposed. QRNCDS disseminates k source data packets to n sensor nodes in the network (n>k) according to the minimum spanning tree traversal mechanism. Every node stores only one encoded data packet in its storage which is the XOR result of the received source data packets in accordance with the quasi-randomized matrix theory. The algorithm adopts the minimum spanning tree traversal rule to reduce the complexity of the traversal message of the source packets. In order to solve the problem that some source packets cannot be restored if the random matrix is not full column rank, the semi-randomized network coding method is used in QRNCDS. Each source node only needs to store its own source data packet, and the storage nodes choose to receive or not. In the decoding phase, Gaussian Elimination and Belief Propagation are combined to improve the probability and efficiency of data decoding. As a result, part of the source data can be recovered in the case of semi-random matrix without full column rank. The simulation results show that QRNCDS has lower energy consumption, higher data collection efficiency, higher decoding efficiency, smaller data storage redundancy and larger network fault tolerance.

RDP: A storage-tier-aware Robust Data Placement strategy for Hadoop in a Cloud-based Heterogeneous Environment

  • Muhammad Faseeh Qureshi, Nawab;Shin, Dong Ryeol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4063-4086
    • /
    • 2016
  • Cloud computing is a robust technology, which facilitate to resolve many parallel distributed computing issues in the modern Big Data environment. Hadoop is an ecosystem, which process large data-sets in distributed computing environment. The HDFS is a filesystem of Hadoop, which process data blocks to the cluster nodes. The data block placement has become a bottleneck to overall performance in a Hadoop cluster. The current placement policy assumes that, all Datanodes have equal computing capacity to process data blocks. This computing capacity includes availability of same storage media and same processing performances of a node. As a result, Hadoop cluster performance gets effected with unbalanced workloads, inefficient storage-tier, network traffic congestion and HDFS integrity issues. This paper proposes a storage-tier-aware Robust Data Placement (RDP) scheme, which systematically resolves unbalanced workloads, reduces network congestion to an optimal state, utilizes storage-tier in a useful manner and minimizes the HDFS integrity issues. The experimental results show that the proposed approach reduced unbalanced workload issue to 72%. Moreover, the presented approach resolve storage-tier compatibility problem to 81% by predicting storage for block jobs and improved overall data block placement by 78% through pre-calculated computing capacity allocations and execution of map files over respective Namenode and Datanodes.

Design and Implementation of a Mapping Manager for a Logical Volume Manager (논리볼륨 관리자를 위한 매핑 관리자의 설계 및 구현)

  • 최영희;유재수;오재철
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2002.11a
    • /
    • pp.350-362
    • /
    • 2002
  • A new architecture called the Storage Area Network(SAN) was developed in response to the requirements of high availability of data, scalable growth and system performance In order to use SAN more efficiently, must SAN operating systems support storage virtualization concepts that allow users to view physical storage devices attached to SAN as a large volume virtually. A logical volume manager Days a key role in storage virtualization it realizes the storage virtualization by mapping logical addresses to physical addresses. In this paper, we design and implement an efficient and flexible mapping method for logical volume manager. The mapping method in this paper supports a snapshot that preserves a volume image at certain time and on-line reorganization to allow users to add or remove storage devices to SAN even while the system is running.

  • PDF