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Abstract 
 

Cloud computing is a robust technology, which facilitate to resolve many parallel distributed 
computing issues in the modern Big Data environment. Hadoop is an ecosystem, which 
process large data-sets in distributed computing environment. The HDFS is a filesystem of 
Hadoop, which process data blocks to the cluster nodes. The data block placement has become 
a bottleneck to overall performance in a Hadoop cluster. The current placement policy 
assumes that, all Datanodes have equal computing capacity to process data blocks. This 
computing capacity includes availability of same storage media and same processing 
performances of a node. As a result, Hadoop cluster performance gets effected with 
unbalanced workloads, inefficient storage-tier, network traffic congestion and HDFS integrity 
issues. This paper proposes a storage-tier-aware Robust Data Placement (RDP) scheme, which 
systematically resolves unbalanced workloads, reduces network congestion to an optimal state, 
utilizes storage-tier in a useful manner and minimizes the HDFS integrity issues. The 
experimental results show that the proposed approach reduced unbalanced workload issue to 
72%. Moreover, the presented approach resolve storage-tier compatibility problem to 81% by 
predicting storage for block jobs and improved overall data block placement by 78% through 
pre-calculated computing capacity allocations and execution of map files over respective 
Namenode and Datanodes.  
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1. Introduction 

With the advent of big data era, processing of large data-sets became a prime challenge. 
Many approaches were adopted i.e. serial computing, adhoc computing, distributed computing 
and parallel computing to build state-of-the-art programming models, which could process 
large data size with limited computing capacity [1]. Finally, distributed computing in parallel 
processing approach complied with large data-block management. With the concept of 
parallel processing in distributed environment, Google proposed MapReduce framework in 
2004. Apache Group enhanced features of MapReduce programming model using Google File 
System (GFS) and introduced an open-source software framework known as Hadoop. Apache 
Hadoop is a reliable, scalable and efficient ecosystem, which consists of Hadoop Common, 
Hadoop Distribution File System(HDFS), YARN and MapReduce [2]. Hadoop Common is a 
set of utilities that support environment modules. YARN schedule jobs and allocate resources 
to cluster management. MapReduce is a YARN-based programming model, which process 
large data-sets in parallel computing environment. HDFS is a file system, which process data 
blocks to their respective repositories. 

HDFS consists of Namenode, Datanodes and clients. The client access Namenode to 
store files on Datanodes. Recently, Hadoop introduced the concept of  HDFS federation, 
which states that a client can access multiple Namenodes to process multiple jobs and store 
data on Datanodes. The federation supports heterogeneous storage funtionality, through which 
data blocks are stored over SSD, HDD and RAM storage media. The storage policy permits 
HDFS to store data blocks in four different types i.e. DISK, SSD, RAM_DISK and ARCHIVE 
storage types. The DISK is default storage type over Hard Disk Drive (HDD) and Solid State 
Drive (SSD) storage type. The RAM_DISK is in-place memory storage type and ARCHIVE is 
high density storage type with less compute power [3]. 

When a job is executed in Hadoop, the output is generated in the form of data blocks 
over storage media. HDFS executes Block placement policy function to store resultant data 
blocks over storage-tier  of Hadoop cluster. According to the block placement policy, all block 
jobs are equally distributed in FIFO order. The Application Master (AM) executes block tasks 
simulaneously to respective Datanodes. In this way, all the Datanodes execute block jobs at 
the same time. However in reality, when a fast Datanode finishes job tasks earlier than slow 
computing Datanode and become idle, Namenode switches unprocessed job tasks of slow 
Datanode to idle fast Datanode. To this end, Datanodes exchange job tasks between each other 
and result block job switching time overhead in the distributed computing topology. The fast 
Datanode receive block job with transfer time overhead while slow Datanode send block job 
with dispatch time overhead. As a result, overall performance of a Hadoop cluster is severely 
affected due to unbalanced workloads, network congestions, storage-tier inefficiency and 
HDFS federation issues. 
For Example: A Hadoop Cluster executes data block tasks to Nodes ‘A’, ‘B’ and ‘C’ with 
default distribution ratio of 4 SSD jobs and 8 HDD jobs. Node ‘A’ finishes SSD and HDD jobs 
earlier than Node ‘B’ and ‘C’. As a result, Namenode switches unprocessed block jobs of 
Datanode ‘B’ and ‘C’ to Datanode ‘A’. The results of task execution depict that Namenode 
allocates 5 SSD and 11 HDD unprocessed block jobs to Datanode ‘A’ having transfer time 
overhead of 40 seconds,  while Datanode B process 2 SSD and 3 HDD block jobs with 
dispatch time overhead of 25 seconds and Datanode ‘C’ process 1 SSD and 2 HDD block jobs 
with dispatch time overhead of 22 seconds as also seen from Fig. 1. 
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In order to resolve the unbalanced workload issue over cluster, we propose 
storage-tier-aware Robust Data Placement (RDP) scheme, which systematically reduce the 
transfer and dispatch time overhead issue. The proposed approach is divided into three phases. 
The first phase collects and stores cluster task processing information, predicts storage device 
type of block jobs and collects capacity computing analytics over Datanodes. The second 
phase generates configuration files based on first phase data configuraton over Namenode and 
Datanodes respectively. The third phase executes block jobs map files configuration to the 
Hadoop cluster.  

 

 
 

Fig. 1. Hadoop default Data placement 
 

The significant contributions of our approach can be highlighted as: 
• An In-place job processing mechanism having Resource Processing Manager (RPM), 

which includes: 
o A compact novel MessageSync subroutine, which collect and store data block 

job activity messages over Namenode through enhanced belief propagation 
model. The MessageSync container provides customized block job 
information, which help HDFS block placement operation to reduce delay 
and network congestion while deploying block jobs in Datanodes. 

o A novel block job predication approach through MessageSync data module, 
which train and predict data blocks to store over job type storage media of 
Namenode and Datanodes. The MFG reduces block job storage time 
overhead  and dispatches enlisted block jobs to predicted storage media of 
Datanode. 

o A robust Computing Capacity Ratio (CCR) subroutine to calculate job 
processing performance of a node and remove unbalanced workload and 
network congestion by making pre-computed block job processing between 
slow and fast Datanodes. 
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• An initial data placement mechanism which includes: 
o Generation of executable pre-computed map files to deploy in-place job 

processing configuration parameters over respective Namenode and 
Datanodes. 

• A Data Block placement mechanism execution algorithm to process pre-computed 
map files configuration over Hadoop cluster. 

The remaining paper is organized as follows. Section II briefly gives overview of Hadoop 
architecture and motivation to solve the problem. Section III elaborates previous study and 
discuss previous approaches to address similar problem and includes list of acronyms used 
throughout this paper. Section IV briefly explains storage-tier-aware Robust Datablock 
Placement (RDP) scheme to reduce transfer and dispatch time overhead issue. Section V 
explains experimental environment and RDP scheme results. The comparative analysis with 
existing schemes is also included in this section. Finally, section VI shows conclusion with 
significant contributions and future research directions. 

2. Overview and motivation 
2.1 Hadoop Cluster 
  Hadoop is an open source apache project, which provides a data processing 
framework. When a MapReduce job is submitted to Hadoop cluster, YARN schedules the job 
and allocates memory resources over cluster. MapReduce split the jobs into various 
independent tasks and process them sequentially. Tasks are divided into two sets i.e. map tasks 
and reduce tasks. Initially,map tasks are processed in parallel and output result is sent as an 
input to reduce task. Furthermore, reduce tasks are processed in parallel and results an output 
in the pre-defined directory. To this extent, a job is processed over a piece of data and results 
data block jobs in the cluster. HDFS is responsible to process resultant data blocks to 
respective Datanodes.  

HDFS is an only file system of ecosystem, which consists of Namenode, clients and 
Datanodes. Namenode stores file system and Datanode metadata. The HDFS architecture 
explains basic communication pattern among Namenode, clients and Datanodes. A client is a 
user, which requests file addition and modification to Namenode and  process block jobs to 
Datanodes as seen from Fig. 2. Recently [3], Hadoop has introduced the concept of HDFS 
Federation, which consists of two layers i.e. Namespace and Block Storage service. 
Namespace consists of directories, files and blocks. The primary job of namespace is to create, 
delete and modify directories in file-system. Block storage service  
consists of two parts i.e. Block Management and Storage.  
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Fig. 2. HDFS Architecture  
 

Block management process block operations i.e. dispatch block jobs to datanodes over 
block placement policy and create, modify and get block locations. Storage layer is provided 
by Datanodes to store blocks on local file system and allows read/write access. A single 
namespace manages block queue through a block pool and together become Namespace 
volume as seen from Fig. 3. 

 
2.2 Motivation 
 HDFS distribute data blocks equally to all Datanodes. It is assumed that block jobs are 
processed in ideal condition having same computing capacity over multiple storage-tier 
Datanodes. However, in real-world environment, clusters do not have same configuration of 
computing capacity i.e. processing speed and storage media. The cluster consists of multiple 
Datanodes with different computing capacity and become more unpredictable with multiple 
storage media i.e. HDD, SSD and RAM as seen from Fig. 4.  
 

 
Fig. 3. HDFS Federation 

 
The previous research works lack information about handling multiple storage-tier and HDFS 
federation environment. The state-of-art schemes  are specifically designed for single storage 
i.e. Hard Disk Drive and manage single Namenode only. Moreover, when a SSD block job is 
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processed, they do not recognize it. As a result, cluster pass numerous error exceptions and 
data block placement is stopped. This paper proposes RDP to resolve unbalanced workload 
issues in a systematic order. Our proposed scheme predicts storage media type from block jobs 
and avoids the issue of being halt in Federation environment. 
 

Fig. 4. Hadoop default Data placement  

3. RELATED WORK 

Researchers have contributed many schemes to optimize data block placement in 
Hadoop cluster. Lee et al [4] proposed Dynamic Data Placement (DDP) strategy to process 
data blocks by using an information register known as “Ratio Table”. DDP record job types, 
compute capacity ratio of each Datanode and store into RatioTable. Moreover, Namenode 
calculate computing capacity through a heartbeat message and dispatch data blocks to the 
Datanodes. However, DDP did not explain the mechanism that sent and received datanode 
information i.e. processing capacity and storage information for a block job. DDP works on 
single storage media i.e. Hard disk drive (HDD) and generate runtime exceptions when 
RatioTable handles multiple jobs at a time. Lee et al [5] presented another data block 
placement approach known as Innovative Data Placement (IDP), which reduced task transfer 
time by transferring block job to nearest possible Datanode. However, HDFS may consist of 
hundreds of Datanodes at the same time and IDP had created a huge overhead time between 
dispatch and transfer of block jobs among Datanodes. Lili et al [6] proposed Partition-based 
Intelligent data block placement scheme, which processed block jobs in parent-child 
hierarchal order. The scheme also proposed parent-child hierarchy in Datanodes and compute 
capacity and calculate disk space utilization in peer-to-peer environment. However, HDFS 
worked over client/server environment and was not dependent on any accidental failure of a 
Datanode within parent-to-child hierarchy. Moreover, Datanodes shared block job 
information, which drastically increased dispatch and transfer times overhead between them. 

 
 
 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016                                4069 

Table 1. The generation configuration of Data Blocks 
Acronym Description 
MSM (A) Message Synchronization Module 
N Namenode 
D Datanode 
ST Storage-tier 
NM Node Manager 
NI Node Information 
APS Applications 
CA Containers 
DI Disks (HDD) 
SD SSD 
RA RAM_DISK 
HS History 
MRH Map Reduce History Server 

 

Acronym Description 
NSV Namespace Volume 
NS Namespace 
P Pool 
AP Application 
SR Storage & Retreive 
YTS Yarn Timeline Server 
RM Resource Manager 
NMS Node Manager Information 
AM Application Master 
Zo Zoo Keeper 
HFI HDFS Federation Instance 
RPM Resource Processing Manager 
FIFO First In First Out 

 

 
Changjian et al [7] proposed optimal data placement in MapReduce (OPTAS) to 

improve data block placement by reconfiguring MapReduce model parameters. OPTAS 
fulfilled the shuffle time delay gap between map and reduce tasks. However, default data 
placement policy dispatched block jobs to Datanodes and did not prefer resultant output of 
MapReduce model. Julio et al [8] proposed a new MapReduce framework (MRA++), which 
considered heterogeneity of Datanodes with enhanced data distribution, task schedule and job 
control. However, MRA++ is limited to MapReduce model with default block job placement 
policy. Lingjun et al [9] proposed a network load sensitive block placement strategy, that 
worked over default data block placement policy with edited network parameters. The scheme 
shared network load by shuffling replicas from high group to low group by using node 
selection algorithm. However, HDFS preferred that initial data blocks must reach to 
Datanodes. Meanwhile, Datanodes created replicas as per replica policy in Namenode. 
Yuanquan et al [10] proposed a MapReduce-based data distribution and data migration 
scheme. Their scheme addressed performance degradation issue during map phase in cluster. 
Moreover, it processed block jobs on default data block placement policy, therefore, could not 
contribute significantly at HDFS module. In contrast to all these, our proposed scheme of RDP 
is compatible to data block placement policy and emphasizes specifically to process block jobs 
in an efficient way to respective Datanodes. 

4. Storage-tier-aware ROBUST DATA BLOCK PLACEMENT (RDP) 
 In this section, we have explained RDP scheme in detail. The proposed scheme  
distributes operational process in three phases i.e. (i) In-place job processing, (ii) Initial data 
placement and, (iii) Data block Placement. The first phase is further categorized in three 
subsections i.e. (a) MessageSync, (b) Mapping File-to-Storage Generation (MFG) and, (c) 
Capacity Computing Ratio (CCR).   
 When a block job is processed into HDFS Federation, it is buffered into Job Buffer. 
The HFI initiates phase-1 and forward block job parameters from buffer to RPM. The RPM 
activates the MessageSync module, record block job entry into DataTable and data block 
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parameters are passed to the MFG.  MFG predicts storage media for the block job repository 
into the cluster and forward parameters to the CCR, which calculates computing capacity of 
Datanode and submit configurations back to HFI. The HFI executes initial data placement 
phase to deploy phase-1 configurations to map files of Namenode and Datanode. Finally, the 
NFI executes Data Block Placement process to deploy map file configurations over Namenode 
and Datanodes, as seen from Fig. 5. 

4.1 Phase-1: In-place Job processing (Namenode processing) 
In this section, RDP performs in-place data block processing. When a block job 

arrives at the HDFS, the HFI receives the job and send to the Buffer block. The buffer contains 
two processing queues. The new job is submitted to QueueMFG, where block job is passed over 
MFG module to predict preferred storage media type i.e. HDD, SSD and RAM. The prediction 
parameters are added to the block job parameters and block job is forwarded to QueueCCR, 
where computing capacity of predicted storage node is calculated. MessageSync container is 
an information container, which provides cluster block job statistics and provide input data 
statistics to predict storage media type. Finally, block job is wrapped with computed 
processing information and sent to NFM as seen from Fig. 6. 

Algorithm-1 depicts that data blocks of a job i.e. wordcount are processed through 
phase-1, MFG predicts the suitable storage media for wordcount job and CCR proposes 
Datanode to deploy wordcount resultant data blocks.  

4.1.1 MessageSync Module (MSM) 
 MessageSync is a data component of RPM, which is used to collect data block 
processing information from a Hadoop cluster. It is designed to synchronize data block 
messages of related components to Namenode and Datanode. Fig. 7 depicts MessageSync 
module architecture, which request data block job processing information over Namenode and 
Datanode layer components and receive a response message with processed job parameters. 
By default, Namenode provides a mechanism to send and receive cluster activity messages but 
is limited to block generation messages over Namenode and execution messages at Datanodes. 
Furthermore, data blocks are manually transmitted over single storage-tier node through an 
administrator control and cluster is not aware of pre-computing node capacity calculation. 
Therefore, MSM facilitates cluster to keep data block processing information over it. In order 
to get data block processing information, we have used Belief Propagation method [11], which 
receives and sends log messages to destination components having small overheads than 
original messages. Furthermore, we need to perform inference on belief propagation so we 
opted Message Propagation Model [12], which states that, a message m of a variable 
component i having value ϰi with a belief bi (ϰi) can be propagated from source component a 
to destination component i represents likeliness of random variable Xi where ϰi ϵ Xi by, 
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Fig. 5. Robust Data Block Placement Architecture 

 

 

 
Fig. 6. In-place Block Job Processing 
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𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝑎 →𝑖(ϰ𝑖) (1) 
After receiving request message, a response message to stated request is passed containing 
data block information through RA, SD and DI to ST using eq (1) as,  

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝐷𝐼𝑖→𝑆𝑇𝑖�ϰ𝑆𝑇𝑖� (2) 
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝑆𝐷𝑖→𝑆𝑇𝑖�ϰ𝑆𝑇𝑖� (3) 
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝑅𝐴𝑖→𝑆𝑇𝑖�ϰ𝑆𝑇𝑖� (4) 

 

 
Fig. 7. MessageSync Architecture 

 
After receiving component messages to Storage-tier component, belief of ST component is 
calculated and can be obtained by, 

𝑏𝑖�ϰ𝑆𝑇𝑖�  ∝  � 𝑚(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖) → 𝑆𝑇𝑖�ϰ𝑆𝑇𝑖�
(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖) ∈𝑁(𝑆𝑇𝑖)

 (5) 

Similarly, we pass NI, APS and CA response messages to component NM as, 
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝑁𝐼𝑖 → 𝑁𝑀𝑖

�ϰ𝑁𝑀𝑖
� (6) 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝐴𝑃𝑆𝑖 → 𝑁𝑀𝑖
�ϰ𝑁𝑀𝑖

� (7) 
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝐶𝐴𝑖 → 𝑁𝑀𝑖

�ϰ𝑁𝑀𝑖
� (8) 

After receiving of component messages by the Node Manager component, belief of NM 
component is calculated and can be obtained by, 

𝑏𝑖�ϰ𝑁𝑀𝑖
�  ∝  � 𝑚(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖,𝐶𝐴𝑖) → 𝑁𝑀𝑖

�ϰ𝑁𝑀𝑖
�

(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖,𝐶𝐴𝑖) ∈𝑁(𝑁𝑀𝑖)

 (9) 

Furthermore, Datanode (Di) layer compiles collective blief of NM and ST components as, 

�𝑏𝑖�ϰ𝑁𝑀𝑖 ,ϰ𝑆𝑇𝑖�  ∝   

⎩
⎪
⎨

⎪
⎧ � 𝑚(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖) → 𝑆𝑇𝑖�ϰ𝑆𝑇𝑖�

(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖) ∈𝑁(𝑆𝑇𝑖)

 

� 𝑚(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖 ,𝐶𝐴𝑖) → 𝑁𝑀𝑖�ϰ𝑁𝑀𝑖�
(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖,𝐶𝐴𝑖) ∈𝑁(𝑁𝑀𝑖) ⎭

⎪
⎬

⎪
⎫

 

   (10) 

As we know that, belief of Node Di is represented as collective belief of components STi and 
NMi as, 

𝑏𝑖�ϰ𝐷𝑖� =  �𝑏𝑖�ϰ𝑁𝑀𝑖,,ϰ𝑆𝑇𝑖� 
Therefore, belief of Node Di can be written as, 
 

𝑏𝑖�ϰ𝐷𝑖�  ∝  

⎩
⎪
⎨

⎪
⎧ � 𝑚(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖) → 𝑆𝑇𝑖�ϰ𝑆𝑇𝑖�

(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖) ∈𝑁(𝑆𝑇𝑖)

 

� 𝑚(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖,𝐶𝐴𝑖) → 𝑁𝑀𝑖�ϰ𝑁𝑀𝑖�
(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖 ,𝐶𝐴𝑖) ∈𝑁 (𝑁𝑀𝑖) ⎭

⎪
⎬

⎪
⎫

 

(11) 
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After we normalize Eq (11) with constant Z, Belief of Node Di can be represented as, 
 

𝑏𝑖�ϰ𝐷𝑖� =  
1
𝑍

 

⎩
⎪
⎨

⎪
⎧ � 𝑚(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖) → 𝑆𝑇𝑖�ϰ𝑆𝑇𝑖�

(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖) ∈𝑁(𝑆𝑇𝑖)

 

� 𝑚(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖,𝐶𝐴𝑖) → 𝑁𝑀𝑖�ϰ𝑁𝑀𝑖�
(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖 ,𝐶𝐴𝑖) ∈𝑁 (𝑁𝑀𝑖) ⎭

⎪
⎬

⎪
⎫

 

(12) 

 
Similarly, we formulate collective belief of components MRH, YTS, RM and NSV in the 
Namenode (Ni) layer and can be represented as, 
 

�𝑏𝑖�ϰ𝑀𝑅𝐻𝑖 ,ϰ𝑌𝑇𝑆𝑖 ,ϰ𝑅𝑀𝑖 ,ϰ𝑁𝑆𝑉𝑖�

=  
1
𝑍

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ � 𝑚𝐻𝑆𝑖→𝑀𝑅𝐻𝑖�ϰ𝑀𝑅𝐻𝑖�

𝐻𝑆𝑖 ∈𝑁(𝑀𝑅𝐻𝑖)

 

� 𝑚(𝑆𝑅𝑖,𝐴𝑃𝑖)→𝑌𝑇𝑆𝑖�ϰ𝑌𝑇𝑆𝑖�
(𝑆𝑅𝑖,𝐴𝑃𝑖)→∈𝑁(𝑌𝑇𝑆𝑖)

 � 𝑚(𝑍𝑂𝑖,𝑁𝑀𝑆𝑖,𝐴𝑀𝑖)→𝑅𝑀𝑖�ϰ𝑅𝑀𝑖�
(𝑍𝑂𝑖,𝑁𝑀𝑆𝑖,𝐴𝑀𝑖) ∈𝑁(𝑅𝑀𝑖)

 

� 𝑚(𝑁𝑆𝑖,𝑃𝑖)→ 𝑁𝑆𝑉𝑖�ϰ𝑁𝑆𝑉𝑖�
(𝑁𝑆𝑖,𝑃𝑖) ∈𝑁(𝑁𝑆𝑉𝑖) ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

(13) 

 
As we know that, belief of Node Ni is represented as collective belief of components MRHi, 
YTSi, RMi and NSVi as, 
 

𝑏𝑖�ϰ𝑁𝑖� =  �𝑏𝑖�ϰ𝑀𝑅𝐻𝑖 ,ϰ𝑌𝑇𝑆𝑖 ,ϰ𝑅𝑀𝑖 ,ϰ𝑁𝑆𝑉𝑖� 
 
Therefore, belief of Node Ni having normalization contant z can be written as, 

𝑏𝑖�ϰ𝑁𝑖� =  
1
𝑍

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ � 𝑚𝐻𝑆𝑖→𝑀𝑅𝐻𝑖�ϰ𝑀𝑅𝐻𝑖�

𝐻𝑆𝑖 ∈𝑁(𝑀𝑅𝐻𝑖)

 

� 𝑚(𝑆𝑅𝑖,𝐴𝑃𝑖)→𝑌𝑇𝑆𝑖�ϰ𝑌𝑇𝑆𝑖�
(𝑆𝑅𝑖,𝐴𝑃𝑖)→∈𝑁(𝑌𝑇𝑆𝑖)

 � 𝑚(𝑍𝑂𝑖,𝑁𝑀𝑆𝑖 ,𝐴𝑀𝑖)→𝑅𝑀𝑖�ϰ𝑅𝑀𝑖�
(𝑍𝑂𝑖,𝑁𝑀𝑆𝑖 ,𝐴𝑀𝑖) ∈𝑁(𝑅𝑀𝑖)

 

� 𝑚(𝑁𝑆𝑖,𝑃𝑖)→ 𝑁𝑆𝑉𝑖�ϰ𝑁𝑆𝑉𝑖�
(𝑁𝑆𝑖,𝑃𝑖) ∈𝑁(𝑁𝑆𝑉𝑖) ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

(14) 

 
The belief of Node Di and Ni can also be observed from Fig. 8(a) and Fig. 8(b). 

At this stage, we have received response data block information messages from 
multiple components to Namenode (Ni) and Datanode (Di) layers. In order to forward response 
data block information messages to MessageSync component, we calculate joint belief of node 
Di and Ni layers. The joint belief represents a logical container i.e. MessageSync where 
Namenode (Ni) and Datanode (Di) messages are stored. The logical component L in message 
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propagation model can be expressed as, 
 

𝑏𝐿(ϰ𝐿) =  𝑏𝐴(𝑋𝐴) (15) 
Where 𝑋𝐴 =  {ϰ𝑫𝒊, ϰ𝑁𝒊 ∶  𝐷𝑖,𝑁𝑖  ∈ 𝑁(𝐴) } and ϰ𝐿 is the domain space associated with logical 
component L as observed from Fig. 9. 
The domain space ϰ𝐿  𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 ��ϰ𝐷𝑖 ,ϰ𝑁𝑖� | 𝑓𝐴 �ϰ𝐷𝑖 ,ϰ𝑁𝑖� = 1,   ϰ𝐷𝑖  ∈  𝜒𝐷𝑖 ,𝜘𝑁𝑖 ∈   𝜒𝑁𝑖� where 
factor fA  is the bipartite string between all joint components. Therefore, joint belief of 
component L can be expressed as, 
 

𝑏𝐿(𝜘𝐿) =
1
𝑍

 � 𝑚(𝐷𝑖,𝑁𝑖)→𝐿(𝜘𝐿)
(𝐷𝑖,𝑁𝑖) ∈𝑁(𝐿)

 
(16) 

In order to remove the original messages overhead and provide minimum message transaction  
 

  
Fig. 8(a). Belief of Node Di Fig. 8(b). Belief of Node Ni 

 
time, we add factor to Namenode (Ni) and Datanode (Di). The belief of logical component L 
with Factor FA can be expressed as, 

𝑏𝐿(𝜘𝐿) =
1
𝑍

 𝑓𝐴(𝐷𝑖 ,𝑁𝑖) =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎩
⎪
⎨

⎪
⎧ � 𝑚(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖)→𝑆𝑇𝑖�𝜘𝑆𝑇𝑖�

(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖)∈𝑁(𝑆𝑇𝑖)

� 𝑚(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖 ,𝐶𝐴𝑖)→𝑁𝑀𝑖�𝜘𝑁𝑀𝑖�
(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖 ,𝐶𝐴𝑖)∈𝑁(𝑁𝑀𝑖) ⎭

⎪
⎬

⎪
⎫

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ � 𝑚𝐻𝑆𝑖→𝑀𝑅𝐻𝑖�𝜘𝑀𝑅𝐻𝑖�

𝐻𝑆𝑖∈𝑁(𝑀𝑅𝐻𝑖)

� 𝑚(𝑆𝑅𝑖,𝐴𝑃𝑖)→𝑌𝑇𝑆𝑖�𝜘𝑌𝑇𝑆𝑖�
(𝑆𝑅𝑖,𝐴𝑃𝑖)∈𝑁(𝑌𝑇𝑆𝑖)

� 𝑚(𝑍𝑂𝑖,𝑁𝑀𝑆𝑖,𝐴𝑀𝑖)→𝑅𝑀𝑖�𝜘𝑅𝑀𝑖�
(𝑍𝑂𝑖,𝑁𝑀𝑆𝑖,𝐴𝑀𝑖)∈𝑁(𝑅𝑀𝑖)

� 𝑚(𝑁𝑆𝑖,𝑃𝑖)→𝑁𝑆𝑉𝑖�𝜘𝑁𝑆𝑉𝑖�
(𝑁𝑆𝑖,𝑃𝑖)∈𝑁(𝑁𝑆𝑉𝑖) ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(17) 

After applying Factor FA to MSM, we simplify Eq (16) and Eq (17) and receive a close form 
solution as, 

𝑚(𝐷𝑖,𝑁𝑖)→𝐿(𝜘𝐿) = �𝑓𝐴(𝑋𝐴) � 𝑚(𝐷𝑖,𝑁𝑖)→𝐿(𝜘𝐿)
(𝐷𝑖,𝑁𝑖)∈𝑁(𝐿)

    (18) 
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Where 𝑚(𝐷𝑖,𝑁𝑖)→𝐿(𝜘𝐿) represents collection of block data messages in MessageSync module 
equivalent to factor FA filtered messages at respective Namenode and Datanode layers.  
Fig. 10  depicts the process of collecting data block information messages into MSM having 
less overhead than original messages. 

4.1.2 Mapping File-to-Storage-Prediction Generator (MFG) 
When a MapReduce job is executed i.e. wordcount, the Hadoop generates an output 

file. The file is stored in HDFS, where it gets divided into multiple data blocks. The generation 
of data blocks are dependent to distribution size as seen from Table 2. 
 

Table 2. The generation configuration of Data Blocks 
Job Type Size Distribution Size Block Chunk No. of Blocks 
Wordcount 2 GB 64 MB  2GB = 2048/64=32  32 Blocks 
Grep 4 GB 128 MB 8GB = 8192/128= 32 64 Blocks 
Wordmean 2 GB 64 MB 2GB = 2048/64=32 32 Blocks 

 

 
By default, the HDFS store data blocks in DISK storage. When a client requests 

filesystem to process data blocks in other storage i.e. SSD, the block jobs add an storage 
overhead to the data block description. 

Furthermore, block manager performs lookup process to identify a SSD storage in 
Datanodes and execute block job with lookup time overhead. The data blocks are dispatched 
to SSD Datanodes having transfer and lookup time overheads with additional storage 
overhead. In order to the overheads, the RDP presents a prediction model. The MFG initially 
trains the block job data present in the MSM and DataTable repository. Secondly, it executes 
prediction of block jobs over fresh arrival of data block jobs. The “DataTable” is a buffer to 
store job type of data blocks and MSM is a data block processing information container as 
discussed in previous section. After the block jobs are trained, prediction model identifies 
storage with job types in block jobs. 

 
Fig. 9. Belief of Factor A (Logical L) 
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Fig. 10. MessageSync Module Information Repository 

 
For this purpose, we have used Hidden Markov Model (HMM) [13], which provides a 

robust   self-learning mechanism. At first, we insert block job sequence into the model as an 
input feed. Each block job consists of BlockJobId, JobType and Time to complete the process. 
The data block storage type i.e. SSD, HDD and RAM is extracted from MessageSync data 
block information container and transition matrix is created to include block storage 
information. By default, the HMM model include hidden states as  𝑋 =  {𝑥1, 𝑥2} , transition 
probability with conditions as, 𝐴 =  𝑎𝑖𝑗 = �𝑃�𝑞𝑡+1 = 𝑥𝑗|𝑞𝑡 = 𝑥𝑗��  , observations state 
𝑌 =  {𝑦1,𝑦2,𝑦3,𝑦4} and emission probability 𝐵 = 𝑏𝑖𝑗. After applying our scenario to HMM, 
we find the observations 𝑂 = {𝑗1, 𝑗2 , 𝑗3, 𝑗4, 𝑗𝑁} are observable states of job type while storage 
type i.e. SSD, HDD and RAM are hidden states as seen from Fig. 11. Now according to 
definition of HMM (λ), we get, 

𝝀 = (𝝅,𝑨,𝑩) (19) 
Where π is initial state transition probability matrix, A is the transition matrix whose members 
produce probability of transitioning from one state to another and B is the emission matrix 
which gives bj(Yt).  
 Let j represents six observable jobs  (𝑗1, 𝑗2, 𝑗3 , 𝑗4, 𝑗5, 𝑗6) and three hidden storages SSD, 
HDD and RAM, that complete prediction cycle in the sliding window of time length ∆t. After 
that, we observe that jobs declare storage status and time to predict storage device tSD as seen 
from Fig. 12. The sequence of observations inserted for training the HMM model is, 
𝑂 = {𝑊𝑜𝑟𝑑𝑐𝑜𝑢𝑛𝑡,𝐺𝑟𝑒𝑝,𝑊𝑜𝑟𝑑𝑚𝑒𝑎𝑛}. The probability of observations N=3 is computed in 
view of Forward-Backward and Message propagation algorithms. 
 

 
 

Fig. 11. Mapping Storage Device Type with Job Type 
 
4.1.2.1 Model Training 
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The MFG model is trained with data block parameters available in MSM and 
DataTable. The difference among two training sources is, that MessageSync keep data 
information of Datanodes i.e. blockid, blocklocation, blockstoragedevice and blockjob while 
DataTable contain current block jobs processed by the Namenode. The model transit from 
initial state when first round of training is over and calculate probability of block job type from 
initial state x1 to end state x2 with starting probability π=0.33. Furthermore, hidden state 
transition can be calculated by model parameters λ=(π,A,B). Moreover, the transition 
parameters are fetched from MessageSync and then we train model using 
Expectation-Maximization (EM) [14] algorithm having forward variable ‘α’ and backward 
variable ‘β’. EM algorithm works over maximizing parameters with maximum likelihood 
strategy and takes random iterations for best fit as per our model. Therefore, block jobs are 
processed in several times until job type sequence results best fit parameters for prediction 
model and produces storage type in dataset. 

 
Initially, we calculated probability of observable sequence (Ot,Ot+1,Ot+2) and then 

utilized EM algorithm for model learning. EM consists of two steps: (i) Expectation-step (E) 
and, (ii) Maximization-step (M). Expectation-step calculates storage-likelihood from current 
estimation and maximization-step calculates parameters maximizing expected 
storage-likelihood. In this way, EM algorithm compares block jobs for training MessageSync 
and DataTable elements. 

 
Algorithm-2 depicts that six block jobs are inserted as seed over three hidden states. 

As per the data trained through MessageSync and DataTable, we find Statepath probability 
and then update transition probability and emission probability. After executing Path 
probability again with the valued obtained over EM algorithm, we find block job pair 
classifications match as [(J1,SSD), (J2,HDD), (J3,HDD), (J4,SSD), (J5,SSD), (J6,RAM)] having 
tSD  time to lookup jobs. 
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Fig. 12. Storage Device Type prediction over Job Types 

 
 4.1.2.2 Prediction 

The MFG uses Viterbi algorithm [15] to calculate hidden states of storage device type. 
At first, the algorithm returns optimal state sequence and reveal hidden states of model 
λ=(π,A,B) with 𝑂 = {𝑗1, 𝑗2, 𝑗3, 𝑗4, 𝑗𝑁} and finally calculate sequence of states Sstates= {S1,S2,… 
Sn} as, 

𝑺𝒐𝒑𝒕 =  𝒂𝒓𝒈𝒎𝒂𝒙𝒔𝑷(𝑺𝒔𝒕𝒂𝒕𝒆𝒔;𝑶;𝝀) (20) 
Where Sopt is optimal state sequence. Viberti algorithm permit Sopt to possess possible optimal 
paths at each step t that end at N states. At t+1, S retains to increase and optimal path for N is 
updated. At t+2, S reaches to maxima job-likelihood  and optimal path  for N is updated and 
predicts the hidden state i.e. storage device type from enlisted observations 𝑂 of block jobs as 
seen from Fig. 13. 

 
Fig. 13. MFG predicting Storage Device type states using MSM-Data Table 

 
4.1.3 Capacity Computing Ratio (CCR) 
 The term ‘computing capacity’ of a node elaborates the time interval required to 
complete a job in a Datanode. In order to compute a Datanode capacity, we calculate available 
resources of a node i.e. processor, memory and storage device as, 

𝑁𝑜𝑑𝑒 𝑅𝑎𝑡𝑖𝑜

= �
𝑃𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟�𝑇𝑇𝑜𝑡𝑎𝑙 − (𝑈𝑢𝑠𝑒𝑑 + 𝑅𝑅𝑒𝑠𝑒𝑟𝑣𝑒)�:𝑀𝑀𝑒𝑚𝑜𝑟𝑦

�𝑇𝑜𝑡𝑎𝑙(𝑇𝑇𝑜𝑡𝑎𝑙 − (𝑈𝑢𝑠𝑒𝑑 + 𝑅𝑅𝑒𝑠𝑒𝑟𝑣𝑒)�:𝑆𝑆𝑡𝑜𝑟𝑎𝑔𝑒(𝑆𝑆𝑆𝐷: 𝑆𝐻𝐷𝐷:𝑆𝑅𝐴𝑀))
� 

(21) 

The Node ratio represents available processing capacity of a node to perform a block job 
operation in Hadoop cluster. 
By definition, we calculate Data Blocks as,  

𝐵𝑛 = 𝐷𝑎𝑡𝑎 𝐵𝑙𝑜𝑐𝑘 𝑁𝑜. =
𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒
𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 (22) 

As we know that, Namenode and Datanode computing statistics are stored in the MSM. 
Therefore, By simplifying Eq (18) and Eq (21), we get Node Ratio of a cluster as, 
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𝑁𝑜𝑑𝑒 𝑅𝑎𝑡𝑖𝑜(𝐷𝑖,𝑁𝑖) = �𝑁𝑜𝑑𝑒 𝑅𝑎𝑡𝑖𝑜 ≡ 𝑚(𝐷𝑖,𝑁𝑖)→𝐿(𝜘𝐿)� (23) 
Where ‘≡’ fetches similar data from MessageSync container. Furthermore, we have utilized 
block job prediction over storage media as, 

𝐷 = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑆𝑜𝑝𝑡  
In order to provide a computing capacity formula, number of Bn  over decision D at 
𝑁𝑜𝑑𝑒 𝑅𝑎𝑡𝑖𝑜(𝐷𝑖,𝑁𝑖), calculate CCR as, 

𝐶𝐶𝑅 = �𝑁𝑜𝑑𝑒 𝑅𝑎𝑡𝑖𝑜(𝐷𝑖,𝑁𝑖);𝐷;𝐵𝑛� (24) 
Where Bn are no. of data blocks over predicted storage D ,processed at 𝑁𝑜𝑑𝑒 𝑅𝑎𝑡𝑖𝑜(𝐷𝑖,𝑁𝑖).  
 
4.2 Phase-2: Initial Data placement 
 In this section, configurations from Phase-1 data block are deployed. Phase-2 prepare 
configuration files and data block deployment path over the Hadoop cluster. In order to deploy 
data block configuration, we generate two map files over Namenode and Datanode respective. 
At first, the map files are configured with phase-1 configuration. Secondly, they calculate 
Datanode deployment path delay, confirmation of storage media on respective Datanodes and 
HDFS cross storage integrity delay. The map files are divided into two mapper modules i.e. 
NFI and DBM. The NFI deploy Phase-1 configuration and calculate path delay, storage media 
availability and, cross storage integriy delay and forwards completion message to the DBM. 
The DBM receives NFI confirmation and prepares Datanode for in-place data block 
processing execution over storage media of Datanodes as seen from Fig. 14.  
 
4.2.1 Map Files 

The purpose of generating map file is to ensure exact deployment configuration of 
block job. In-place job processing mechanism generate configuration file for block job 
deployment. It includes number of blocks, proposed storage and Datanode. In order to deploy 
the exact proposed configuration, we divide configuration file into two sets i.e. Namenode 
configuration and Datanode configuration. The Namenode file requires enforcement access 
and metadata information while Datanode file requires straight deployment information. As a 
result, Namenode Map Template and Datanode Map Template are deployed as seen from Fig. 
15(a) and Fig. 15(b). 

Algorithm-3 depicts that mapping file templates are initialized. After parsing the 
in-place job processing information data from phase-1, template file set Namenode,namespace 
and pool through which datablocks are to be executed. The Namenode template file keep 
execution template having the Namenode and Datanode information, while Datanode template 
file keep data block execution path over n storage media of m Datanode. At the end, at the time 
of execution of template files in phase-3, time tNMF and time tDMF is calculated. 

4.3 Phase-3 Data Block Placement 
 In this phase, RDP execute data blocks over pre-computed Datanodes. In phase-3, 
Namenode performs data block execution procedure over map files configured in phase-2. 
When the data blocks are deployed over cluster, Datanode return time to HFI is tA= (tN + tD), 
where TN is the time to generate metadata in Namenode and TD is the time to place block job at 
respective Datanode. The total execution time tA is sent to Namenode and MessageSync logs.  
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Fig. 15(a). Namenode Template 

 
 

Fig. 14. Initial Data Placement 
 

Fig. 15(b). Datanode Template 
  

Algorithm-4 initializes QueueBlockPlacement and execute map file configuration over cluster. The 
number of data blocks executed over phase-2 map files are logged into the MessageSync and 
return tA to the cluster. 

  

5. Experimental Work 
In this section, we present evaluation of RDP through an experimental environment as shown 
in Table 3. 

Table 3. Cluster Configuration 
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5.1 Environment 
 We have used Intel Xeon with 8 CPUs, 32GB memory and three storage facilities i.e. 
HDD 1TB disk, 128 GB Samsung SSD and temfs utility as RAM_DISK storage. Similarly, we 
also use Intel core i5 with 4 Core, 16GB memory and three storage facilities i.e. HDD 1TB 
disk, 128 GB Samsung SSD and temfs utility as RAM_DISK storage. For virtual environment, 
we used virtualbox 5.0.16 for installing 5 virtual machines on discussed machine 
configurations as seen from Table 4. 
 

Table 4. Virtual Machines Configuration over Hadoop Cluster 
 Node CPU Memory Disk Configuration 

Master Node 6 16 GB HDD,SSD,RAM Intel Xeon 
Slave1 2 4GB HDD,SSD,RAM Intel Xeon 
Slave2 2 4GB HDD,SSD,RAM Intel Core i5 
Slave3 2 4GB HDD,SSD,RAM Intel Core i5 
Slave4 2 4GB HDD,SSD,RAM Intel Core i5 

 

 
5.2 Experimental Dataset 
 The dataset used to process experimental work includes (i) 20,000 data block request 
messages (ii) 20,000 data block response messages (iii) 640 SSD wordcount data blocks of 
64MB (40GB size) (iv) 640 HDD wordcount data blocks (40GB size) (v) 64 RAM wordcount 
data blocks (1 GB size) (vi) 640 SSD grep data blocks (40GB size) (vii) 640 HDD grep data 
blocks (40GB size) (viii) 64 RAM grep data blocks (1 GB size). 
 
5.3 Experimental Results 
 The experiments conducted to evaluate our scheme are (i) Message Request and 
Response acknowledgement of MSM (ii) Block job predictions (iii) Node ratio (iv) In-place 
job processing execution (v) Initial Data Placement execution (vi) Data Block Placement 
execution (vii) DISK and SSD block job processing (viii) Network congestion and Block job 
device utilization 
 
5.3.1 Message Request and Response acknowledgement of MSM 
 The purpose of MSM is to collect data block processing information i.e. total number 
of blocks processed at storage-tier, total number of data blocks processed by Node Manager 
with detail statistics of memory, secondry storage space utilization and processor computation. 
MSM utilizes Hadoop cluster subroutines of generating data messages.  The MSM program 
tool initially send data request Request_Acknowledgement (RE) to cluster and receive 
Response_Acknowledgement (RA) to the MSM container. The messages are sent and 
received over components i.e. ST, MRH, NSV, YTS and NM. MSM keep individual tables for 
the components and stores data in FIFO order. Hadoop cluster exchange information messages 
between Namenode and Datanodes at bandwidth 0.5 ≤ Bandwidth ≥ 5 MB/s. However, 
message propagation strategy reduces message overhead from original message and reduce 
bandwidth utilization by 72%. The bandwidth utilized to request and receive data block 
information messages successfully can be observed from Fig. 16(a), (b), (c) and (d). 
 
5.3.2 Block job predictions 
After training the model for available dataset, we run multiple simulations of predictions for 
storage type jobs. At first hour of prediction, we predict 348 SSD block jobs, 233 HDD block 
jobs and 12 RAM jobs out of 640 block jobs. The jobs which could not be predicted due to 
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missing headers of destination Datanodes are 47. In the second hour of prediction, we find 210 
SSD jobs, 170 HDD jobs and no RAM jobs. The jobs which could not be predicted due to 
missing headers of destination Datanodes are 260. In the third hour of simulation, we find 178 
SSD jobs, 218 HDD jobs and no RAM jobs. Again, the unpredicted jobs due to missing 
headers of destination Datanodes are 244. In order to identify individual storage media 
percentile of predicted data blocks, we calculate average of total predicted SSD, HDD and 
RAM data blocks and found 92% match for SSD with 3% simulation error, 83.4% match for 
HDD with 5% simulation error and 81.6% match for RAM data blocks with 7% simulation 
error,  as seen from Fig. 16(e), (f), (g) and (h).  
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5.3.3 Node Ratio 
The purpose of calculating Node Ratio is to evaluate a node’s computing capacity and propose 
data block placement according to node ratio of Node A,B,C and D. To this end, we found that 
three nodes are having SSD and HDD storage capacity. Node A is the only fast node having 
RAM block job processing capacity, node B is also a fast node, Node C is 4% slow than node 
A and B , and Node D is the slowest node. After observing  CCR values of Node A,B,C and D, 
we deploy SSD,HDD and RAM decision block jobs and found that Node A processed 30 SSD 
data blocks, 24 HDD data blocks and 2 RAM data blocks. Node B processed 30 SSD data 
blocks, 22 HDD data blocks. Node C processed 29 SSD data blocks, 24 HDD data blocks and 
Node D processed 20 SSD data blocks, 15 HDD data blocks simultaneously. In this way, we 
observe that when a Hadoop cluster process data blocks over defined capacity parameters, it 
results in an optimized utilization of storage devices on respective Datanodes. We also 
observed that storage media in respective Datanodes performed a 72% faster deployment of 
data blocks than normal cluster deployment due to guided environment and depicted an 
improvement of 48% secondry storage deployment than random writing of data block on each 
storage media of the cluster as seen from Fig. 16(i) and (j). 
 
5.3.4 In-place job processing execution 
In the first phase, we executed two Mapreduce programs i.e wordcount and grep. The data 
blocks are predicted for storage media in QueueMFG and perform node capacity computing 
procedure in QueueCCR. We observed that the processing of QueueMFG consumed 61% more 
time than QueueCCR. Furthermore, the data blocks generated by wordcount program were 
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consuming 43 seconds in QueueMFG and 9 seconds in QueueCCR. Similarly, the data blocks 
generated by grep program were consuming 41 seconds in QueueMFG and 8 seconds in 
QueueCCR. Meanwhile, average execution time of a Single Namenode cluster consumed 35% 
less time than average execution time of HDFS Federation as seen from Fig. 16(k) and (l). 
 
5.3.5 Initial Data Placement execution 
The phase-2 configure map files over Namenode and Datanodes. When a write_Nmap request 
appear in the Namenode, NMF_Invoke method receives storage media and pre-computed 
node parameters and pass the reference parameters to NMF_Create method. The NMF_Create 
method generates a map file with Namenode enforcement parameters at NMF. Similarly, 
when a write_Dmap request appear in Datanode, DMF_Invoke method receives the 
configuraton and enforce parameters to DMF_Create method. The DMF_Create method 
generate a map file having Datanode storage media configurations to deploy the data blocks 
and pre-computed node configurations to deploy data blocks to Node A,B,C and D in a 
balanced manner. Finally, the mapping_file_instance is generated, which transfers 
deployment configuration to Block_Manager class for a cluster reference. The average file 
generation time observed is 33 seconds at MasterNode, 28 seconds at Node A, 27 seconds  at 
Node B, 28 seconds Node C and 26 seconds at Node D as seen from Fig. 16(m) and (n). 
 
5.3.6 Data Block Placement execution 
In phase-3, we observed the deployment of data blocks related to wordcount and grep 
programs. It is observed that data blocks are divided into Nodes A, B, C and D in a balanced 
manner. The execution time to place datablocks in Node A is 299 seconds for wordcount and 
247 seconds for grep. The execution time to place data blocks in Node B is 296 seconds for 
wordcount and 243 seconds for grep. The execution time to place data blocks in Node C is 297 
seconds for wordcount and 245 seconds for grep. The execution time to place data blocks in 
Node D is 298 seconds for wordcount and 246 seconds for grep. We have observed from Fig. 1 
that a cluster create unbalanced workload, network congestion, improper storage media 
utilization and HDFS integrity issues. The default Hadoop data block placement scheme 
consumed an average of 58 seconds transfer time overhead at Node A to process data blocks of 
other slow nodes B and C. The Node B consumed 38 seconds and Node C consumed 43 
seconds to dispatch unprocessed data blocks to Node A. The proposed RDP scheme places 
data blocks simultaneously to Datanodes A, B, C and D, having almost same average 
execution time and reduce unbalanced workload to 72%, storage-tier competibility issue to 81% 
and overall average improvement of 78% data block placement process than default scheme, 
as seen from Fig. 16(o) and (p).  
 
5.3.7 DISK and SSD block job processing 
We performed comparitive analysis of RDP with existing schemes i.e. OPTAS, IBP, IDP and 
DDP. In order to identify the performance of previous schemes, we deployed the schemes to 
Hadoop cluster and executed two programs i.e. wordcount and grep. Initially, we executed 
wordcount program having 10 data blocks of 64M to HDD (Disk Drive) and evaluated that 
OPTAS process in 132 seconds, IBP process in 143 seconds, IDP process in 121 seconds, 
DDP process in 152 seconds and RDP process in 61 seconds. Therefore, RDP performed 
averagely 61% better than previous schemes. Similarly, we executed grep program having 10 
data blocks of 64M to HDD and evaluated that OPTAS process in 127 seconds, IBP process in 
149 seconds, IDP process in 118 seconds, DDP process in 146 seconds and RDP process in 56 
seconds. Therefore, RDP perform averagely 43% better than previous schemes. Secondly, we 
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executed wordcount program having 10 data blocks of 64M to SSD (Solid State Drive) and 
evaluated that OPTAS process in 128 seconds, IBP process in 131 seconds, IDP process in 117 
seconds, DDP process in 136 seconds and RDP process in 39 seconds. Therefore, RDP 
perform averagely 71% better than previous schemes. Similarly, we executed grep program 
having 10 data blocks of 64M to SSD (Solid State Drive) and evaluated that OPTAS process in 
131 seconds, IBP process in 142 seconds, IDP process in 122 seconds, DDP process in 159 
seconds and RDP process in 47 seconds. Therefore, RDP perform averagely 73% better than 
previous schemes as seen from Fig. 16(q) and (r). 
 
5.3.8 Network congestion and Block job device utilization 
We performed comparitive analysis to calculate average delay of data block placement among 
Datanodes in the network environment. In order to calculate data block packet delay, we could 
use simulation tools like NS-2 but such tools do not provide Hadoop data block packet 
libraries. Therefore, we calculated the delay by executing program at multiple Datanodes. We 
executed 3000 random data blocks over Hadoop cluster to perform data placement over 
OPTAS, DDR, IDP, IBP and RDP schemes. We evaluated that OPTAS and DDR are having 
default Hadoop parameters and were consuming an average delay time of 12 and 11 mins 
respectively. IDP consumed 9 mins while IBP consumed 8.6 mins. Our proposed RDP scheme 
consumed 7.9 mins for processing data blocks on Hadoop cluster as seen from Fig. 16(s). Thus, 
RDP has performed averagely 8% better than previous schemes. 
We further performed comparitive analysis to calculate storage media utilization ratio over 
OPTAS, DDP and RDP. The purpose of computing device utilization ratio is to calculate and 
compare scheme awareness of storage-tier in Hadoop cluster. For this purpose, we executed 
300 MB data blocks of wordcount program and observed that OPTAS and DDP execute HDD 
(Disk Drive) data blocks, while RDP executed SSD and RAM data blocks as seen from Fig. 
16(t). Therefore, we concluded that, RDP is the only scheme among all state-of-art schemes 
that utilizes all data blocks for available storage devices i.e. HDD, SSD and RAM.  

6. Conclusion 
This paper proposes Robust Data Placement (RDP) scheme to efficiently process data blocks 
in Hadoop cluster. The RDP scheme systematically process data blocks by firstly generating 
in-place job processing configurations through MSM, MFG and CCR modules. Secondly, it 
deploys configurations to Initial Data Placement through map files. Finally, it process data 
blocks through deploying map files in respective Namenode and Datanodes. The experiments 
have shown that RDP is an efficient scheme and accelerate Hadoop cluster by reducing 
unbalanced workload, data block network congestion, efficient usage of storage media and 
decreased HDFS integrity problems.  
In the future, we will explore multi homing issues, which enable Hadoop cluster to perform 
data placement in multiple networks at the same time. 
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