
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, Sep. 2016 4063
Copyright ⓒ2016 KSII

RDP: A storage-tier-aware Robust Data
Placement strategy for Hadoop in a

Cloud-based Heterogeneous Environment

Nawab Muhammad Faseeh Qureshi1 and Dong Ryeol Shin2
1,2Department of Computer Science and Engineering,

Sungkyunkwan University, Suwon, Korea.
 [e-mail : faseeh,drshin@skku.edu]

*Corresponding author : Dong Ryeol Shin

Received March 24, 2016; revised July 5, 2016; accepted July 21, 2016;
published September 30, 2016

Abstract

Cloud computing is a robust technology, which facilitate to resolve many parallel distributed
computing issues in the modern Big Data environment. Hadoop is an ecosystem, which
process large data-sets in distributed computing environment. The HDFS is a filesystem of
Hadoop, which process data blocks to the cluster nodes. The data block placement has become
a bottleneck to overall performance in a Hadoop cluster. The current placement policy
assumes that, all Datanodes have equal computing capacity to process data blocks. This
computing capacity includes availability of same storage media and same processing
performances of a node. As a result, Hadoop cluster performance gets effected with
unbalanced workloads, inefficient storage-tier, network traffic congestion and HDFS integrity
issues. This paper proposes a storage-tier-aware Robust Data Placement (RDP) scheme, which
systematically resolves unbalanced workloads, reduces network congestion to an optimal state,
utilizes storage-tier in a useful manner and minimizes the HDFS integrity issues. The
experimental results show that the proposed approach reduced unbalanced workload issue to
72%. Moreover, the presented approach resolve storage-tier compatibility problem to 81% by
predicting storage for block jobs and improved overall data block placement by 78% through
pre-calculated computing capacity allocations and execution of map files over respective
Namenode and Datanodes.

Keywords: MapReduce, Hadoop, Data placement.

This work was supported by Institute for Information & communications Technology Promotion(IITP) grant
funded by the Korea government(MSIP) (No.R0113-15-0002, Automotive ICT based e-Call standardization
and after-market device development)

http://dx.doi.org/10.3837/tiis.2016.09.003 ISSN : 1976-7277

4064 Qureshi et al.: RDP: A storage-tier-aware Robust Data Placement strategy
for Hadoop in a Cloud-based Heterogeneous Environment

1. Introduction

With the advent of big data era, processing of large data-sets became a prime challenge.
Many approaches were adopted i.e. serial computing, adhoc computing, distributed computing
and parallel computing to build state-of-the-art programming models, which could process
large data size with limited computing capacity [1]. Finally, distributed computing in parallel
processing approach complied with large data-block management. With the concept of
parallel processing in distributed environment, Google proposed MapReduce framework in
2004. Apache Group enhanced features of MapReduce programming model using Google File
System (GFS) and introduced an open-source software framework known as Hadoop. Apache
Hadoop is a reliable, scalable and efficient ecosystem, which consists of Hadoop Common,
Hadoop Distribution File System(HDFS), YARN and MapReduce [2]. Hadoop Common is a
set of utilities that support environment modules. YARN schedule jobs and allocate resources
to cluster management. MapReduce is a YARN-based programming model, which process
large data-sets in parallel computing environment. HDFS is a file system, which process data
blocks to their respective repositories.

HDFS consists of Namenode, Datanodes and clients. The client access Namenode to
store files on Datanodes. Recently, Hadoop introduced the concept of HDFS federation,
which states that a client can access multiple Namenodes to process multiple jobs and store
data on Datanodes. The federation supports heterogeneous storage funtionality, through which
data blocks are stored over SSD, HDD and RAM storage media. The storage policy permits
HDFS to store data blocks in four different types i.e. DISK, SSD, RAM_DISK and ARCHIVE
storage types. The DISK is default storage type over Hard Disk Drive (HDD) and Solid State
Drive (SSD) storage type. The RAM_DISK is in-place memory storage type and ARCHIVE is
high density storage type with less compute power [3].

When a job is executed in Hadoop, the output is generated in the form of data blocks
over storage media. HDFS executes Block placement policy function to store resultant data
blocks over storage-tier of Hadoop cluster. According to the block placement policy, all block
jobs are equally distributed in FIFO order. The Application Master (AM) executes block tasks
simulaneously to respective Datanodes. In this way, all the Datanodes execute block jobs at
the same time. However in reality, when a fast Datanode finishes job tasks earlier than slow
computing Datanode and become idle, Namenode switches unprocessed job tasks of slow
Datanode to idle fast Datanode. To this end, Datanodes exchange job tasks between each other
and result block job switching time overhead in the distributed computing topology. The fast
Datanode receive block job with transfer time overhead while slow Datanode send block job
with dispatch time overhead. As a result, overall performance of a Hadoop cluster is severely
affected due to unbalanced workloads, network congestions, storage-tier inefficiency and
HDFS federation issues.
For Example: A Hadoop Cluster executes data block tasks to Nodes ‘A’, ‘B’ and ‘C’ with
default distribution ratio of 4 SSD jobs and 8 HDD jobs. Node ‘A’ finishes SSD and HDD jobs
earlier than Node ‘B’ and ‘C’. As a result, Namenode switches unprocessed block jobs of
Datanode ‘B’ and ‘C’ to Datanode ‘A’. The results of task execution depict that Namenode
allocates 5 SSD and 11 HDD unprocessed block jobs to Datanode ‘A’ having transfer time
overhead of 40 seconds, while Datanode B process 2 SSD and 3 HDD block jobs with
dispatch time overhead of 25 seconds and Datanode ‘C’ process 1 SSD and 2 HDD block jobs
with dispatch time overhead of 22 seconds as also seen from Fig. 1.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4065

In order to resolve the unbalanced workload issue over cluster, we propose
storage-tier-aware Robust Data Placement (RDP) scheme, which systematically reduce the
transfer and dispatch time overhead issue. The proposed approach is divided into three phases.
The first phase collects and stores cluster task processing information, predicts storage device
type of block jobs and collects capacity computing analytics over Datanodes. The second
phase generates configuration files based on first phase data configuraton over Namenode and
Datanodes respectively. The third phase executes block jobs map files configuration to the
Hadoop cluster.

Fig. 1. Hadoop default Data placement

The significant contributions of our approach can be highlighted as:
• An In-place job processing mechanism having Resource Processing Manager (RPM),

which includes:
o A compact novel MessageSync subroutine, which collect and store data block

job activity messages over Namenode through enhanced belief propagation
model. The MessageSync container provides customized block job
information, which help HDFS block placement operation to reduce delay
and network congestion while deploying block jobs in Datanodes.

o A novel block job predication approach through MessageSync data module,
which train and predict data blocks to store over job type storage media of
Namenode and Datanodes. The MFG reduces block job storage time
overhead and dispatches enlisted block jobs to predicted storage media of
Datanode.

o A robust Computing Capacity Ratio (CCR) subroutine to calculate job
processing performance of a node and remove unbalanced workload and
network congestion by making pre-computed block job processing between
slow and fast Datanodes.

4066 Qureshi et al.: RDP: A storage-tier-aware Robust Data Placement strategy
for Hadoop in a Cloud-based Heterogeneous Environment

• An initial data placement mechanism which includes:
o Generation of executable pre-computed map files to deploy in-place job

processing configuration parameters over respective Namenode and
Datanodes.

• A Data Block placement mechanism execution algorithm to process pre-computed
map files configuration over Hadoop cluster.

The remaining paper is organized as follows. Section II briefly gives overview of Hadoop
architecture and motivation to solve the problem. Section III elaborates previous study and
discuss previous approaches to address similar problem and includes list of acronyms used
throughout this paper. Section IV briefly explains storage-tier-aware Robust Datablock
Placement (RDP) scheme to reduce transfer and dispatch time overhead issue. Section V
explains experimental environment and RDP scheme results. The comparative analysis with
existing schemes is also included in this section. Finally, section VI shows conclusion with
significant contributions and future research directions.

2. Overview and motivation
2.1 Hadoop Cluster
 Hadoop is an open source apache project, which provides a data processing
framework. When a MapReduce job is submitted to Hadoop cluster, YARN schedules the job
and allocates memory resources over cluster. MapReduce split the jobs into various
independent tasks and process them sequentially. Tasks are divided into two sets i.e. map tasks
and reduce tasks. Initially,map tasks are processed in parallel and output result is sent as an
input to reduce task. Furthermore, reduce tasks are processed in parallel and results an output
in the pre-defined directory. To this extent, a job is processed over a piece of data and results
data block jobs in the cluster. HDFS is responsible to process resultant data blocks to
respective Datanodes.

HDFS is an only file system of ecosystem, which consists of Namenode, clients and
Datanodes. Namenode stores file system and Datanode metadata. The HDFS architecture
explains basic communication pattern among Namenode, clients and Datanodes. A client is a
user, which requests file addition and modification to Namenode and process block jobs to
Datanodes as seen from Fig. 2. Recently [3], Hadoop has introduced the concept of HDFS
Federation, which consists of two layers i.e. Namespace and Block Storage service.
Namespace consists of directories, files and blocks. The primary job of namespace is to create,
delete and modify directories in file-system. Block storage service
consists of two parts i.e. Block Management and Storage.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4067

Fig. 2. HDFS Architecture

Block management process block operations i.e. dispatch block jobs to datanodes over
block placement policy and create, modify and get block locations. Storage layer is provided
by Datanodes to store blocks on local file system and allows read/write access. A single
namespace manages block queue through a block pool and together become Namespace
volume as seen from Fig. 3.

2.2 Motivation
 HDFS distribute data blocks equally to all Datanodes. It is assumed that block jobs are
processed in ideal condition having same computing capacity over multiple storage-tier
Datanodes. However, in real-world environment, clusters do not have same configuration of
computing capacity i.e. processing speed and storage media. The cluster consists of multiple
Datanodes with different computing capacity and become more unpredictable with multiple
storage media i.e. HDD, SSD and RAM as seen from Fig. 4.

Fig. 3. HDFS Federation

The previous research works lack information about handling multiple storage-tier and HDFS
federation environment. The state-of-art schemes are specifically designed for single storage
i.e. Hard Disk Drive and manage single Namenode only. Moreover, when a SSD block job is

4068 Qureshi et al.: RDP: A storage-tier-aware Robust Data Placement strategy
for Hadoop in a Cloud-based Heterogeneous Environment

processed, they do not recognize it. As a result, cluster pass numerous error exceptions and
data block placement is stopped. This paper proposes RDP to resolve unbalanced workload
issues in a systematic order. Our proposed scheme predicts storage media type from block jobs
and avoids the issue of being halt in Federation environment.

Fig. 4. Hadoop default Data placement

3. RELATED WORK

Researchers have contributed many schemes to optimize data block placement in
Hadoop cluster. Lee et al [4] proposed Dynamic Data Placement (DDP) strategy to process
data blocks by using an information register known as “Ratio Table”. DDP record job types,
compute capacity ratio of each Datanode and store into RatioTable. Moreover, Namenode
calculate computing capacity through a heartbeat message and dispatch data blocks to the
Datanodes. However, DDP did not explain the mechanism that sent and received datanode
information i.e. processing capacity and storage information for a block job. DDP works on
single storage media i.e. Hard disk drive (HDD) and generate runtime exceptions when
RatioTable handles multiple jobs at a time. Lee et al [5] presented another data block
placement approach known as Innovative Data Placement (IDP), which reduced task transfer
time by transferring block job to nearest possible Datanode. However, HDFS may consist of
hundreds of Datanodes at the same time and IDP had created a huge overhead time between
dispatch and transfer of block jobs among Datanodes. Lili et al [6] proposed Partition-based
Intelligent data block placement scheme, which processed block jobs in parent-child
hierarchal order. The scheme also proposed parent-child hierarchy in Datanodes and compute
capacity and calculate disk space utilization in peer-to-peer environment. However, HDFS
worked over client/server environment and was not dependent on any accidental failure of a
Datanode within parent-to-child hierarchy. Moreover, Datanodes shared block job
information, which drastically increased dispatch and transfer times overhead between them.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4069

Table 1. The generation configuration of Data Blocks
Acronym Description
MSM (A) Message Synchronization Module
N Namenode
D Datanode
ST Storage-tier
NM Node Manager
NI Node Information
APS Applications
CA Containers
DI Disks (HDD)
SD SSD
RA RAM_DISK
HS History
MRH Map Reduce History Server

Acronym Description
NSV Namespace Volume
NS Namespace
P Pool
AP Application
SR Storage & Retreive
YTS Yarn Timeline Server
RM Resource Manager
NMS Node Manager Information
AM Application Master
Zo Zoo Keeper
HFI HDFS Federation Instance
RPM Resource Processing Manager
FIFO First In First Out

Changjian et al [7] proposed optimal data placement in MapReduce (OPTAS) to

improve data block placement by reconfiguring MapReduce model parameters. OPTAS
fulfilled the shuffle time delay gap between map and reduce tasks. However, default data
placement policy dispatched block jobs to Datanodes and did not prefer resultant output of
MapReduce model. Julio et al [8] proposed a new MapReduce framework (MRA++), which
considered heterogeneity of Datanodes with enhanced data distribution, task schedule and job
control. However, MRA++ is limited to MapReduce model with default block job placement
policy. Lingjun et al [9] proposed a network load sensitive block placement strategy, that
worked over default data block placement policy with edited network parameters. The scheme
shared network load by shuffling replicas from high group to low group by using node
selection algorithm. However, HDFS preferred that initial data blocks must reach to
Datanodes. Meanwhile, Datanodes created replicas as per replica policy in Namenode.
Yuanquan et al [10] proposed a MapReduce-based data distribution and data migration
scheme. Their scheme addressed performance degradation issue during map phase in cluster.
Moreover, it processed block jobs on default data block placement policy, therefore, could not
contribute significantly at HDFS module. In contrast to all these, our proposed scheme of RDP
is compatible to data block placement policy and emphasizes specifically to process block jobs
in an efficient way to respective Datanodes.

4. Storage-tier-aware ROBUST DATA BLOCK PLACEMENT (RDP)
 In this section, we have explained RDP scheme in detail. The proposed scheme
distributes operational process in three phases i.e. (i) In-place job processing, (ii) Initial data
placement and, (iii) Data block Placement. The first phase is further categorized in three
subsections i.e. (a) MessageSync, (b) Mapping File-to-Storage Generation (MFG) and, (c)
Capacity Computing Ratio (CCR).
 When a block job is processed into HDFS Federation, it is buffered into Job Buffer.
The HFI initiates phase-1 and forward block job parameters from buffer to RPM. The RPM
activates the MessageSync module, record block job entry into DataTable and data block

4070 Qureshi et al.: RDP: A storage-tier-aware Robust Data Placement strategy
for Hadoop in a Cloud-based Heterogeneous Environment

parameters are passed to the MFG. MFG predicts storage media for the block job repository
into the cluster and forward parameters to the CCR, which calculates computing capacity of
Datanode and submit configurations back to HFI. The HFI executes initial data placement
phase to deploy phase-1 configurations to map files of Namenode and Datanode. Finally, the
NFI executes Data Block Placement process to deploy map file configurations over Namenode
and Datanodes, as seen from Fig. 5.

4.1 Phase-1: In-place Job processing (Namenode processing)
In this section, RDP performs in-place data block processing. When a block job

arrives at the HDFS, the HFI receives the job and send to the Buffer block. The buffer contains
two processing queues. The new job is submitted to QueueMFG, where block job is passed over
MFG module to predict preferred storage media type i.e. HDD, SSD and RAM. The prediction
parameters are added to the block job parameters and block job is forwarded to QueueCCR,
where computing capacity of predicted storage node is calculated. MessageSync container is
an information container, which provides cluster block job statistics and provide input data
statistics to predict storage media type. Finally, block job is wrapped with computed
processing information and sent to NFM as seen from Fig. 6.

Algorithm-1 depicts that data blocks of a job i.e. wordcount are processed through
phase-1, MFG predicts the suitable storage media for wordcount job and CCR proposes
Datanode to deploy wordcount resultant data blocks.

4.1.1 MessageSync Module (MSM)
 MessageSync is a data component of RPM, which is used to collect data block
processing information from a Hadoop cluster. It is designed to synchronize data block
messages of related components to Namenode and Datanode. Fig. 7 depicts MessageSync
module architecture, which request data block job processing information over Namenode and
Datanode layer components and receive a response message with processed job parameters.
By default, Namenode provides a mechanism to send and receive cluster activity messages but
is limited to block generation messages over Namenode and execution messages at Datanodes.
Furthermore, data blocks are manually transmitted over single storage-tier node through an
administrator control and cluster is not aware of pre-computing node capacity calculation.
Therefore, MSM facilitates cluster to keep data block processing information over it. In order
to get data block processing information, we have used Belief Propagation method [11], which
receives and sends log messages to destination components having small overheads than
original messages. Furthermore, we need to perform inference on belief propagation so we
opted Message Propagation Model [12], which states that, a message m of a variable
component i having value ϰi with a belief bi (ϰi) can be propagated from source component a
to destination component i represents likeliness of random variable Xi where ϰi ϵ Xi by,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4071

Fig. 5. Robust Data Block Placement Architecture

Fig. 6. In-place Block Job Processing

4072 Qureshi et al.: RDP: A storage-tier-aware Robust Data Placement strategy
for Hadoop in a Cloud-based Heterogeneous Environment

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝑎 →𝑖(ϰ𝑖) (1)
After receiving request message, a response message to stated request is passed containing
data block information through RA, SD and DI to ST using eq (1) as,

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝐷𝐼𝑖→𝑆𝑇𝑖�ϰ𝑆𝑇𝑖� (2)
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝑆𝐷𝑖→𝑆𝑇𝑖�ϰ𝑆𝑇𝑖� (3)
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝑅𝐴𝑖→𝑆𝑇𝑖�ϰ𝑆𝑇𝑖� (4)

Fig. 7. MessageSync Architecture

After receiving component messages to Storage-tier component, belief of ST component is
calculated and can be obtained by,

𝑏𝑖�ϰ𝑆𝑇𝑖� ∝ � 𝑚(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖) → 𝑆𝑇𝑖�ϰ𝑆𝑇𝑖�
(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖) ∈𝑁(𝑆𝑇𝑖)

 (5)

Similarly, we pass NI, APS and CA response messages to component NM as,
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝑁𝐼𝑖 → 𝑁𝑀𝑖

�ϰ𝑁𝑀𝑖
� (6)

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝐴𝑃𝑆𝑖 → 𝑁𝑀𝑖
�ϰ𝑁𝑀𝑖

� (7)
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝐶𝐴𝑖 → 𝑁𝑀𝑖

�ϰ𝑁𝑀𝑖
� (8)

After receiving of component messages by the Node Manager component, belief of NM
component is calculated and can be obtained by,

𝑏𝑖�ϰ𝑁𝑀𝑖
� ∝ � 𝑚(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖,𝐶𝐴𝑖) → 𝑁𝑀𝑖

�ϰ𝑁𝑀𝑖
�

(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖,𝐶𝐴𝑖) ∈𝑁(𝑁𝑀𝑖)

 (9)

Furthermore, Datanode (Di) layer compiles collective blief of NM and ST components as,

�𝑏𝑖�ϰ𝑁𝑀𝑖 ,ϰ𝑆𝑇𝑖� ∝

⎩
⎪
⎨

⎪
⎧ � 𝑚(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖) → 𝑆𝑇𝑖�ϰ𝑆𝑇𝑖�

(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖) ∈𝑁(𝑆𝑇𝑖)

� 𝑚(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖 ,𝐶𝐴𝑖) → 𝑁𝑀𝑖�ϰ𝑁𝑀𝑖�
(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖,𝐶𝐴𝑖) ∈𝑁(𝑁𝑀𝑖) ⎭

⎪
⎬

⎪
⎫

 (10)

As we know that, belief of Node Di is represented as collective belief of components STi and
NMi as,

𝑏𝑖�ϰ𝐷𝑖� = �𝑏𝑖�ϰ𝑁𝑀𝑖,,ϰ𝑆𝑇𝑖�
Therefore, belief of Node Di can be written as,

𝑏𝑖�ϰ𝐷𝑖� ∝

⎩
⎪
⎨

⎪
⎧ � 𝑚(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖) → 𝑆𝑇𝑖�ϰ𝑆𝑇𝑖�

(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖) ∈𝑁(𝑆𝑇𝑖)

� 𝑚(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖,𝐶𝐴𝑖) → 𝑁𝑀𝑖�ϰ𝑁𝑀𝑖�
(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖 ,𝐶𝐴𝑖) ∈𝑁 (𝑁𝑀𝑖) ⎭

⎪
⎬

⎪
⎫

(11)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4073

After we normalize Eq (11) with constant Z, Belief of Node Di can be represented as,

𝑏𝑖�ϰ𝐷𝑖� =
1
𝑍

⎩
⎪
⎨

⎪
⎧ � 𝑚(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖) → 𝑆𝑇𝑖�ϰ𝑆𝑇𝑖�

(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖) ∈𝑁(𝑆𝑇𝑖)

� 𝑚(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖,𝐶𝐴𝑖) → 𝑁𝑀𝑖�ϰ𝑁𝑀𝑖�
(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖 ,𝐶𝐴𝑖) ∈𝑁 (𝑁𝑀𝑖) ⎭

⎪
⎬

⎪
⎫

(12)

Similarly, we formulate collective belief of components MRH, YTS, RM and NSV in the
Namenode (Ni) layer and can be represented as,

�𝑏𝑖�ϰ𝑀𝑅𝐻𝑖 ,ϰ𝑌𝑇𝑆𝑖 ,ϰ𝑅𝑀𝑖 ,ϰ𝑁𝑆𝑉𝑖�

=
1
𝑍

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ � 𝑚𝐻𝑆𝑖→𝑀𝑅𝐻𝑖�ϰ𝑀𝑅𝐻𝑖�

𝐻𝑆𝑖 ∈𝑁(𝑀𝑅𝐻𝑖)

� 𝑚(𝑆𝑅𝑖,𝐴𝑃𝑖)→𝑌𝑇𝑆𝑖�ϰ𝑌𝑇𝑆𝑖�
(𝑆𝑅𝑖,𝐴𝑃𝑖)→∈𝑁(𝑌𝑇𝑆𝑖)

 � 𝑚(𝑍𝑂𝑖,𝑁𝑀𝑆𝑖,𝐴𝑀𝑖)→𝑅𝑀𝑖�ϰ𝑅𝑀𝑖�
(𝑍𝑂𝑖,𝑁𝑀𝑆𝑖,𝐴𝑀𝑖) ∈𝑁(𝑅𝑀𝑖)

� 𝑚(𝑁𝑆𝑖,𝑃𝑖)→ 𝑁𝑆𝑉𝑖�ϰ𝑁𝑆𝑉𝑖�
(𝑁𝑆𝑖,𝑃𝑖) ∈𝑁(𝑁𝑆𝑉𝑖) ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

(13)

As we know that, belief of Node Ni is represented as collective belief of components MRHi,
YTSi, RMi and NSVi as,

𝑏𝑖�ϰ𝑁𝑖� = �𝑏𝑖�ϰ𝑀𝑅𝐻𝑖 ,ϰ𝑌𝑇𝑆𝑖 ,ϰ𝑅𝑀𝑖 ,ϰ𝑁𝑆𝑉𝑖�

Therefore, belief of Node Ni having normalization contant z can be written as,

𝑏𝑖�ϰ𝑁𝑖� =
1
𝑍

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ � 𝑚𝐻𝑆𝑖→𝑀𝑅𝐻𝑖�ϰ𝑀𝑅𝐻𝑖�

𝐻𝑆𝑖 ∈𝑁(𝑀𝑅𝐻𝑖)

� 𝑚(𝑆𝑅𝑖,𝐴𝑃𝑖)→𝑌𝑇𝑆𝑖�ϰ𝑌𝑇𝑆𝑖�
(𝑆𝑅𝑖,𝐴𝑃𝑖)→∈𝑁(𝑌𝑇𝑆𝑖)

 � 𝑚(𝑍𝑂𝑖,𝑁𝑀𝑆𝑖 ,𝐴𝑀𝑖)→𝑅𝑀𝑖�ϰ𝑅𝑀𝑖�
(𝑍𝑂𝑖,𝑁𝑀𝑆𝑖 ,𝐴𝑀𝑖) ∈𝑁(𝑅𝑀𝑖)

� 𝑚(𝑁𝑆𝑖,𝑃𝑖)→ 𝑁𝑆𝑉𝑖�ϰ𝑁𝑆𝑉𝑖�
(𝑁𝑆𝑖,𝑃𝑖) ∈𝑁(𝑁𝑆𝑉𝑖) ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

(14)

The belief of Node Di and Ni can also be observed from Fig. 8(a) and Fig. 8(b).

At this stage, we have received response data block information messages from
multiple components to Namenode (Ni) and Datanode (Di) layers. In order to forward response
data block information messages to MessageSync component, we calculate joint belief of node
Di and Ni layers. The joint belief represents a logical container i.e. MessageSync where
Namenode (Ni) and Datanode (Di) messages are stored. The logical component L in message

4074 Qureshi et al.: RDP: A storage-tier-aware Robust Data Placement strategy
for Hadoop in a Cloud-based Heterogeneous Environment

propagation model can be expressed as,

𝑏𝐿(ϰ𝐿) = 𝑏𝐴(𝑋𝐴) (15)
Where 𝑋𝐴 = {ϰ𝑫𝒊, ϰ𝑁𝒊 ∶ 𝐷𝑖,𝑁𝑖 ∈ 𝑁(𝐴) } and ϰ𝐿 is the domain space associated with logical
component L as observed from Fig. 9.
The domain space ϰ𝐿 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 ��ϰ𝐷𝑖 ,ϰ𝑁𝑖� | 𝑓𝐴 �ϰ𝐷𝑖 ,ϰ𝑁𝑖� = 1, ϰ𝐷𝑖 ∈ 𝜒𝐷𝑖 ,𝜘𝑁𝑖 ∈ 𝜒𝑁𝑖� where
factor fA is the bipartite string between all joint components. Therefore, joint belief of
component L can be expressed as,

𝑏𝐿(𝜘𝐿) =
1
𝑍

 � 𝑚(𝐷𝑖,𝑁𝑖)→𝐿(𝜘𝐿)
(𝐷𝑖,𝑁𝑖) ∈𝑁(𝐿)

(16)

In order to remove the original messages overhead and provide minimum message transaction

Fig. 8(a). Belief of Node Di Fig. 8(b). Belief of Node Ni

time, we add factor to Namenode (Ni) and Datanode (Di). The belief of logical component L
with Factor FA can be expressed as,

𝑏𝐿(𝜘𝐿) =
1
𝑍

 𝑓𝐴(𝐷𝑖 ,𝑁𝑖) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎩
⎪
⎨

⎪
⎧ � 𝑚(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖)→𝑆𝑇𝑖�𝜘𝑆𝑇𝑖�

(𝐷𝐼𝑖,𝑆𝐷𝑖,𝑅𝐴𝑖)∈𝑁(𝑆𝑇𝑖)

� 𝑚(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖 ,𝐶𝐴𝑖)→𝑁𝑀𝑖�𝜘𝑁𝑀𝑖�
(𝑁𝐼𝑖,𝐴𝑃𝑆𝑖 ,𝐶𝐴𝑖)∈𝑁(𝑁𝑀𝑖) ⎭

⎪
⎬

⎪
⎫

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ � 𝑚𝐻𝑆𝑖→𝑀𝑅𝐻𝑖�𝜘𝑀𝑅𝐻𝑖�

𝐻𝑆𝑖∈𝑁(𝑀𝑅𝐻𝑖)

� 𝑚(𝑆𝑅𝑖,𝐴𝑃𝑖)→𝑌𝑇𝑆𝑖�𝜘𝑌𝑇𝑆𝑖�
(𝑆𝑅𝑖,𝐴𝑃𝑖)∈𝑁(𝑌𝑇𝑆𝑖)

� 𝑚(𝑍𝑂𝑖,𝑁𝑀𝑆𝑖,𝐴𝑀𝑖)→𝑅𝑀𝑖�𝜘𝑅𝑀𝑖�
(𝑍𝑂𝑖,𝑁𝑀𝑆𝑖,𝐴𝑀𝑖)∈𝑁(𝑅𝑀𝑖)

� 𝑚(𝑁𝑆𝑖,𝑃𝑖)→𝑁𝑆𝑉𝑖�𝜘𝑁𝑆𝑉𝑖�
(𝑁𝑆𝑖,𝑃𝑖)∈𝑁(𝑁𝑆𝑉𝑖) ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(17)

After applying Factor FA to MSM, we simplify Eq (16) and Eq (17) and receive a close form
solution as,

𝑚(𝐷𝑖,𝑁𝑖)→𝐿(𝜘𝐿) = �𝑓𝐴(𝑋𝐴) � 𝑚(𝐷𝑖,𝑁𝑖)→𝐿(𝜘𝐿)
(𝐷𝑖,𝑁𝑖)∈𝑁(𝐿)

 (18)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4075

Where 𝑚(𝐷𝑖,𝑁𝑖)→𝐿(𝜘𝐿) represents collection of block data messages in MessageSync module
equivalent to factor FA filtered messages at respective Namenode and Datanode layers.
Fig. 10 depicts the process of collecting data block information messages into MSM having
less overhead than original messages.

4.1.2 Mapping File-to-Storage-Prediction Generator (MFG)
When a MapReduce job is executed i.e. wordcount, the Hadoop generates an output

file. The file is stored in HDFS, where it gets divided into multiple data blocks. The generation
of data blocks are dependent to distribution size as seen from Table 2.

Table 2. The generation configuration of Data Blocks
Job Type Size Distribution Size Block Chunk No. of Blocks
Wordcount 2 GB 64 MB 2GB = 2048/64=32 32 Blocks
Grep 4 GB 128 MB 8GB = 8192/128= 32 64 Blocks
Wordmean 2 GB 64 MB 2GB = 2048/64=32 32 Blocks

By default, the HDFS store data blocks in DISK storage. When a client requests

filesystem to process data blocks in other storage i.e. SSD, the block jobs add an storage
overhead to the data block description.

Furthermore, block manager performs lookup process to identify a SSD storage in
Datanodes and execute block job with lookup time overhead. The data blocks are dispatched
to SSD Datanodes having transfer and lookup time overheads with additional storage
overhead. In order to the overheads, the RDP presents a prediction model. The MFG initially
trains the block job data present in the MSM and DataTable repository. Secondly, it executes
prediction of block jobs over fresh arrival of data block jobs. The “DataTable” is a buffer to
store job type of data blocks and MSM is a data block processing information container as
discussed in previous section. After the block jobs are trained, prediction model identifies
storage with job types in block jobs.

Fig. 9. Belief of Factor A (Logical L)

4076 Qureshi et al.: RDP: A storage-tier-aware Robust Data Placement strategy
for Hadoop in a Cloud-based Heterogeneous Environment

Fig. 10. MessageSync Module Information Repository

For this purpose, we have used Hidden Markov Model (HMM) [13], which provides a

robust self-learning mechanism. At first, we insert block job sequence into the model as an
input feed. Each block job consists of BlockJobId, JobType and Time to complete the process.
The data block storage type i.e. SSD, HDD and RAM is extracted from MessageSync data
block information container and transition matrix is created to include block storage
information. By default, the HMM model include hidden states as 𝑋 = {𝑥1, 𝑥2} , transition
probability with conditions as, 𝐴 = 𝑎𝑖𝑗 = �𝑃�𝑞𝑡+1 = 𝑥𝑗|𝑞𝑡 = 𝑥𝑗�� , observations state
𝑌 = {𝑦1,𝑦2,𝑦3,𝑦4} and emission probability 𝐵 = 𝑏𝑖𝑗. After applying our scenario to HMM,
we find the observations 𝑂 = {𝑗1, 𝑗2 , 𝑗3, 𝑗4, 𝑗𝑁} are observable states of job type while storage
type i.e. SSD, HDD and RAM are hidden states as seen from Fig. 11. Now according to
definition of HMM (λ), we get,

𝝀 = (𝝅,𝑨,𝑩) (19)
Where π is initial state transition probability matrix, A is the transition matrix whose members
produce probability of transitioning from one state to another and B is the emission matrix
which gives bj(Yt).
 Let j represents six observable jobs (𝑗1, 𝑗2, 𝑗3 , 𝑗4, 𝑗5, 𝑗6) and three hidden storages SSD,
HDD and RAM, that complete prediction cycle in the sliding window of time length ∆t. After
that, we observe that jobs declare storage status and time to predict storage device tSD as seen
from Fig. 12. The sequence of observations inserted for training the HMM model is,
𝑂 = {𝑊𝑜𝑟𝑑𝑐𝑜𝑢𝑛𝑡,𝐺𝑟𝑒𝑝,𝑊𝑜𝑟𝑑𝑚𝑒𝑎𝑛}. The probability of observations N=3 is computed in
view of Forward-Backward and Message propagation algorithms.

Fig. 11. Mapping Storage Device Type with Job Type

4.1.2.1 Model Training

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4077

The MFG model is trained with data block parameters available in MSM and
DataTable. The difference among two training sources is, that MessageSync keep data
information of Datanodes i.e. blockid, blocklocation, blockstoragedevice and blockjob while
DataTable contain current block jobs processed by the Namenode. The model transit from
initial state when first round of training is over and calculate probability of block job type from
initial state x1 to end state x2 with starting probability π=0.33. Furthermore, hidden state
transition can be calculated by model parameters λ=(π,A,B). Moreover, the transition
parameters are fetched from MessageSync and then we train model using
Expectation-Maximization (EM) [14] algorithm having forward variable ‘α’ and backward
variable ‘β’. EM algorithm works over maximizing parameters with maximum likelihood
strategy and takes random iterations for best fit as per our model. Therefore, block jobs are
processed in several times until job type sequence results best fit parameters for prediction
model and produces storage type in dataset.

Initially, we calculated probability of observable sequence (Ot,Ot+1,Ot+2) and then

utilized EM algorithm for model learning. EM consists of two steps: (i) Expectation-step (E)
and, (ii) Maximization-step (M). Expectation-step calculates storage-likelihood from current
estimation and maximization-step calculates parameters maximizing expected
storage-likelihood. In this way, EM algorithm compares block jobs for training MessageSync
and DataTable elements.

Algorithm-2 depicts that six block jobs are inserted as seed over three hidden states.

As per the data trained through MessageSync and DataTable, we find Statepath probability
and then update transition probability and emission probability. After executing Path
probability again with the valued obtained over EM algorithm, we find block job pair
classifications match as [(J1,SSD), (J2,HDD), (J3,HDD), (J4,SSD), (J5,SSD), (J6,RAM)] having
tSD time to lookup jobs.

4078 Qureshi et al.: RDP: A storage-tier-aware Robust Data Placement strategy
for Hadoop in a Cloud-based Heterogeneous Environment

Fig. 12. Storage Device Type prediction over Job Types

 4.1.2.2 Prediction

The MFG uses Viterbi algorithm [15] to calculate hidden states of storage device type.
At first, the algorithm returns optimal state sequence and reveal hidden states of model
λ=(π,A,B) with 𝑂 = {𝑗1, 𝑗2, 𝑗3, 𝑗4, 𝑗𝑁} and finally calculate sequence of states Sstates= {S1,S2,…
Sn} as,

𝑺𝒐𝒑𝒕 = 𝒂𝒓𝒈𝒎𝒂𝒙𝒔𝑷(𝑺𝒔𝒕𝒂𝒕𝒆𝒔;𝑶;𝝀) (20)
Where Sopt is optimal state sequence. Viberti algorithm permit Sopt to possess possible optimal
paths at each step t that end at N states. At t+1, S retains to increase and optimal path for N is
updated. At t+2, S reaches to maxima job-likelihood and optimal path for N is updated and
predicts the hidden state i.e. storage device type from enlisted observations 𝑂 of block jobs as
seen from Fig. 13.

Fig. 13. MFG predicting Storage Device type states using MSM-Data Table

4.1.3 Capacity Computing Ratio (CCR)
 The term ‘computing capacity’ of a node elaborates the time interval required to
complete a job in a Datanode. In order to compute a Datanode capacity, we calculate available
resources of a node i.e. processor, memory and storage device as,

𝑁𝑜𝑑𝑒 𝑅𝑎𝑡𝑖𝑜

= �
𝑃𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟�𝑇𝑇𝑜𝑡𝑎𝑙 − (𝑈𝑢𝑠𝑒𝑑 + 𝑅𝑅𝑒𝑠𝑒𝑟𝑣𝑒)�:𝑀𝑀𝑒𝑚𝑜𝑟𝑦

�𝑇𝑜𝑡𝑎𝑙(𝑇𝑇𝑜𝑡𝑎𝑙 − (𝑈𝑢𝑠𝑒𝑑 + 𝑅𝑅𝑒𝑠𝑒𝑟𝑣𝑒)�:𝑆𝑆𝑡𝑜𝑟𝑎𝑔𝑒(𝑆𝑆𝑆𝐷: 𝑆𝐻𝐷𝐷:𝑆𝑅𝐴𝑀))
�

(21)

The Node ratio represents available processing capacity of a node to perform a block job
operation in Hadoop cluster.
By definition, we calculate Data Blocks as,

𝐵𝑛 = 𝐷𝑎𝑡𝑎 𝐵𝑙𝑜𝑐𝑘 𝑁𝑜. =
𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒
𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 (22)

As we know that, Namenode and Datanode computing statistics are stored in the MSM.
Therefore, By simplifying Eq (18) and Eq (21), we get Node Ratio of a cluster as,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4079

𝑁𝑜𝑑𝑒 𝑅𝑎𝑡𝑖𝑜(𝐷𝑖,𝑁𝑖) = �𝑁𝑜𝑑𝑒 𝑅𝑎𝑡𝑖𝑜 ≡ 𝑚(𝐷𝑖,𝑁𝑖)→𝐿(𝜘𝐿)� (23)
Where ‘≡’ fetches similar data from MessageSync container. Furthermore, we have utilized
block job prediction over storage media as,

𝐷 = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑆𝑜𝑝𝑡
In order to provide a computing capacity formula, number of Bn over decision D at
𝑁𝑜𝑑𝑒 𝑅𝑎𝑡𝑖𝑜(𝐷𝑖,𝑁𝑖), calculate CCR as,

𝐶𝐶𝑅 = �𝑁𝑜𝑑𝑒 𝑅𝑎𝑡𝑖𝑜(𝐷𝑖,𝑁𝑖);𝐷;𝐵𝑛� (24)
Where Bn are no. of data blocks over predicted storage D ,processed at 𝑁𝑜𝑑𝑒 𝑅𝑎𝑡𝑖𝑜(𝐷𝑖,𝑁𝑖).

4.2 Phase-2: Initial Data placement
 In this section, configurations from Phase-1 data block are deployed. Phase-2 prepare
configuration files and data block deployment path over the Hadoop cluster. In order to deploy
data block configuration, we generate two map files over Namenode and Datanode respective.
At first, the map files are configured with phase-1 configuration. Secondly, they calculate
Datanode deployment path delay, confirmation of storage media on respective Datanodes and
HDFS cross storage integrity delay. The map files are divided into two mapper modules i.e.
NFI and DBM. The NFI deploy Phase-1 configuration and calculate path delay, storage media
availability and, cross storage integriy delay and forwards completion message to the DBM.
The DBM receives NFI confirmation and prepares Datanode for in-place data block
processing execution over storage media of Datanodes as seen from Fig. 14.

4.2.1 Map Files

The purpose of generating map file is to ensure exact deployment configuration of
block job. In-place job processing mechanism generate configuration file for block job
deployment. It includes number of blocks, proposed storage and Datanode. In order to deploy
the exact proposed configuration, we divide configuration file into two sets i.e. Namenode
configuration and Datanode configuration. The Namenode file requires enforcement access
and metadata information while Datanode file requires straight deployment information. As a
result, Namenode Map Template and Datanode Map Template are deployed as seen from Fig.
15(a) and Fig. 15(b).

Algorithm-3 depicts that mapping file templates are initialized. After parsing the
in-place job processing information data from phase-1, template file set Namenode,namespace
and pool through which datablocks are to be executed. The Namenode template file keep
execution template having the Namenode and Datanode information, while Datanode template
file keep data block execution path over n storage media of m Datanode. At the end, at the time
of execution of template files in phase-3, time tNMF and time tDMF is calculated.

4.3 Phase-3 Data Block Placement
 In this phase, RDP execute data blocks over pre-computed Datanodes. In phase-3,
Namenode performs data block execution procedure over map files configured in phase-2.
When the data blocks are deployed over cluster, Datanode return time to HFI is tA= (tN + tD),
where TN is the time to generate metadata in Namenode and TD is the time to place block job at
respective Datanode. The total execution time tA is sent to Namenode and MessageSync logs.

4080 Qureshi et al.: RDP: A storage-tier-aware Robust Data Placement strategy
for Hadoop in a Cloud-based Heterogeneous Environment

Fig. 15(a). Namenode Template

Fig. 14. Initial Data Placement

Fig. 15(b). Datanode Template

Algorithm-4 initializes QueueBlockPlacement and execute map file configuration over cluster. The
number of data blocks executed over phase-2 map files are logged into the MessageSync and
return tA to the cluster.

5. Experimental Work
In this section, we present evaluation of RDP through an experimental environment as shown
in Table 3.

Table 3. Cluster Configuration

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4081

5.1 Environment
 We have used Intel Xeon with 8 CPUs, 32GB memory and three storage facilities i.e.
HDD 1TB disk, 128 GB Samsung SSD and temfs utility as RAM_DISK storage. Similarly, we
also use Intel core i5 with 4 Core, 16GB memory and three storage facilities i.e. HDD 1TB
disk, 128 GB Samsung SSD and temfs utility as RAM_DISK storage. For virtual environment,
we used virtualbox 5.0.16 for installing 5 virtual machines on discussed machine
configurations as seen from Table 4.

Table 4. Virtual Machines Configuration over Hadoop Cluster
 Node CPU Memory Disk Configuration

Master Node 6 16 GB HDD,SSD,RAM Intel Xeon
Slave1 2 4GB HDD,SSD,RAM Intel Xeon
Slave2 2 4GB HDD,SSD,RAM Intel Core i5
Slave3 2 4GB HDD,SSD,RAM Intel Core i5
Slave4 2 4GB HDD,SSD,RAM Intel Core i5

5.2 Experimental Dataset
 The dataset used to process experimental work includes (i) 20,000 data block request
messages (ii) 20,000 data block response messages (iii) 640 SSD wordcount data blocks of
64MB (40GB size) (iv) 640 HDD wordcount data blocks (40GB size) (v) 64 RAM wordcount
data blocks (1 GB size) (vi) 640 SSD grep data blocks (40GB size) (vii) 640 HDD grep data
blocks (40GB size) (viii) 64 RAM grep data blocks (1 GB size).

5.3 Experimental Results
 The experiments conducted to evaluate our scheme are (i) Message Request and
Response acknowledgement of MSM (ii) Block job predictions (iii) Node ratio (iv) In-place
job processing execution (v) Initial Data Placement execution (vi) Data Block Placement
execution (vii) DISK and SSD block job processing (viii) Network congestion and Block job
device utilization

5.3.1 Message Request and Response acknowledgement of MSM
 The purpose of MSM is to collect data block processing information i.e. total number
of blocks processed at storage-tier, total number of data blocks processed by Node Manager
with detail statistics of memory, secondry storage space utilization and processor computation.
MSM utilizes Hadoop cluster subroutines of generating data messages. The MSM program
tool initially send data request Request_Acknowledgement (RE) to cluster and receive
Response_Acknowledgement (RA) to the MSM container. The messages are sent and
received over components i.e. ST, MRH, NSV, YTS and NM. MSM keep individual tables for
the components and stores data in FIFO order. Hadoop cluster exchange information messages
between Namenode and Datanodes at bandwidth 0.5 ≤ Bandwidth ≥ 5 MB/s. However,
message propagation strategy reduces message overhead from original message and reduce
bandwidth utilization by 72%. The bandwidth utilized to request and receive data block
information messages successfully can be observed from Fig. 16(a), (b), (c) and (d).

5.3.2 Block job predictions
After training the model for available dataset, we run multiple simulations of predictions for
storage type jobs. At first hour of prediction, we predict 348 SSD block jobs, 233 HDD block
jobs and 12 RAM jobs out of 640 block jobs. The jobs which could not be predicted due to

4082 Qureshi et al.: RDP: A storage-tier-aware Robust Data Placement strategy
for Hadoop in a Cloud-based Heterogeneous Environment

missing headers of destination Datanodes are 47. In the second hour of prediction, we find 210
SSD jobs, 170 HDD jobs and no RAM jobs. The jobs which could not be predicted due to
missing headers of destination Datanodes are 260. In the third hour of simulation, we find 178
SSD jobs, 218 HDD jobs and no RAM jobs. Again, the unpredicted jobs due to missing
headers of destination Datanodes are 244. In order to identify individual storage media
percentile of predicted data blocks, we calculate average of total predicted SSD, HDD and
RAM data blocks and found 92% match for SSD with 3% simulation error, 83.4% match for
HDD with 5% simulation error and 81.6% match for RAM data blocks with 7% simulation
error, as seen from Fig. 16(e), (f), (g) and (h).

Fig. 16(a). RE Single Node Fig. 16(b). RE Federation Fig. 16(c). RS Single Node

Fig. 16(d). RS Federation Fig. 16(e). Total No. of
Predictions Fig. 16(f). HDD Job Prediction

Fig. 16(g). SSD Job Prediction Fig. 16(h). RAM Job Prediction Fig. 16(i). Node Ratio over

Single Namenode

Fig. 16(j). Node Ratio over

HDFS Federation
Fig. 16(k). Phase-1 Federation

Execution
Fig. 16(l). Phase-1 Single

Execution

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4083

Fig. 16(m). Node Ratio (Single
Namenode)

Fig. 16(n). Node Ratio (HDFS
Federation)

Fig. 16(o). Phase-1 Federation
Execution

Fig. 16(p). Phase-1 Single

Execution
Fig. 16(q). DISK Block Job

Processing
Fig. 16(r). SSD Block Job

Processing

Fig. 16(s). Network Congestion Fig. 16(t). Job Based Device

Utilization

5.3.3 Node Ratio
The purpose of calculating Node Ratio is to evaluate a node’s computing capacity and propose
data block placement according to node ratio of Node A,B,C and D. To this end, we found that
three nodes are having SSD and HDD storage capacity. Node A is the only fast node having
RAM block job processing capacity, node B is also a fast node, Node C is 4% slow than node
A and B , and Node D is the slowest node. After observing CCR values of Node A,B,C and D,
we deploy SSD,HDD and RAM decision block jobs and found that Node A processed 30 SSD
data blocks, 24 HDD data blocks and 2 RAM data blocks. Node B processed 30 SSD data
blocks, 22 HDD data blocks. Node C processed 29 SSD data blocks, 24 HDD data blocks and
Node D processed 20 SSD data blocks, 15 HDD data blocks simultaneously. In this way, we
observe that when a Hadoop cluster process data blocks over defined capacity parameters, it
results in an optimized utilization of storage devices on respective Datanodes. We also
observed that storage media in respective Datanodes performed a 72% faster deployment of
data blocks than normal cluster deployment due to guided environment and depicted an
improvement of 48% secondry storage deployment than random writing of data block on each
storage media of the cluster as seen from Fig. 16(i) and (j).

5.3.4 In-place job processing execution
In the first phase, we executed two Mapreduce programs i.e wordcount and grep. The data
blocks are predicted for storage media in QueueMFG and perform node capacity computing
procedure in QueueCCR. We observed that the processing of QueueMFG consumed 61% more
time than QueueCCR. Furthermore, the data blocks generated by wordcount program were

4084 Qureshi et al.: RDP: A storage-tier-aware Robust Data Placement strategy
for Hadoop in a Cloud-based Heterogeneous Environment

consuming 43 seconds in QueueMFG and 9 seconds in QueueCCR. Similarly, the data blocks
generated by grep program were consuming 41 seconds in QueueMFG and 8 seconds in
QueueCCR. Meanwhile, average execution time of a Single Namenode cluster consumed 35%
less time than average execution time of HDFS Federation as seen from Fig. 16(k) and (l).

5.3.5 Initial Data Placement execution
The phase-2 configure map files over Namenode and Datanodes. When a write_Nmap request
appear in the Namenode, NMF_Invoke method receives storage media and pre-computed
node parameters and pass the reference parameters to NMF_Create method. The NMF_Create
method generates a map file with Namenode enforcement parameters at NMF. Similarly,
when a write_Dmap request appear in Datanode, DMF_Invoke method receives the
configuraton and enforce parameters to DMF_Create method. The DMF_Create method
generate a map file having Datanode storage media configurations to deploy the data blocks
and pre-computed node configurations to deploy data blocks to Node A,B,C and D in a
balanced manner. Finally, the mapping_file_instance is generated, which transfers
deployment configuration to Block_Manager class for a cluster reference. The average file
generation time observed is 33 seconds at MasterNode, 28 seconds at Node A, 27 seconds at
Node B, 28 seconds Node C and 26 seconds at Node D as seen from Fig. 16(m) and (n).

5.3.6 Data Block Placement execution
In phase-3, we observed the deployment of data blocks related to wordcount and grep
programs. It is observed that data blocks are divided into Nodes A, B, C and D in a balanced
manner. The execution time to place datablocks in Node A is 299 seconds for wordcount and
247 seconds for grep. The execution time to place data blocks in Node B is 296 seconds for
wordcount and 243 seconds for grep. The execution time to place data blocks in Node C is 297
seconds for wordcount and 245 seconds for grep. The execution time to place data blocks in
Node D is 298 seconds for wordcount and 246 seconds for grep. We have observed from Fig. 1
that a cluster create unbalanced workload, network congestion, improper storage media
utilization and HDFS integrity issues. The default Hadoop data block placement scheme
consumed an average of 58 seconds transfer time overhead at Node A to process data blocks of
other slow nodes B and C. The Node B consumed 38 seconds and Node C consumed 43
seconds to dispatch unprocessed data blocks to Node A. The proposed RDP scheme places
data blocks simultaneously to Datanodes A, B, C and D, having almost same average
execution time and reduce unbalanced workload to 72%, storage-tier competibility issue to 81%
and overall average improvement of 78% data block placement process than default scheme,
as seen from Fig. 16(o) and (p).

5.3.7 DISK and SSD block job processing
We performed comparitive analysis of RDP with existing schemes i.e. OPTAS, IBP, IDP and
DDP. In order to identify the performance of previous schemes, we deployed the schemes to
Hadoop cluster and executed two programs i.e. wordcount and grep. Initially, we executed
wordcount program having 10 data blocks of 64M to HDD (Disk Drive) and evaluated that
OPTAS process in 132 seconds, IBP process in 143 seconds, IDP process in 121 seconds,
DDP process in 152 seconds and RDP process in 61 seconds. Therefore, RDP performed
averagely 61% better than previous schemes. Similarly, we executed grep program having 10
data blocks of 64M to HDD and evaluated that OPTAS process in 127 seconds, IBP process in
149 seconds, IDP process in 118 seconds, DDP process in 146 seconds and RDP process in 56
seconds. Therefore, RDP perform averagely 43% better than previous schemes. Secondly, we

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 9, September 2016 4085

executed wordcount program having 10 data blocks of 64M to SSD (Solid State Drive) and
evaluated that OPTAS process in 128 seconds, IBP process in 131 seconds, IDP process in 117
seconds, DDP process in 136 seconds and RDP process in 39 seconds. Therefore, RDP
perform averagely 71% better than previous schemes. Similarly, we executed grep program
having 10 data blocks of 64M to SSD (Solid State Drive) and evaluated that OPTAS process in
131 seconds, IBP process in 142 seconds, IDP process in 122 seconds, DDP process in 159
seconds and RDP process in 47 seconds. Therefore, RDP perform averagely 73% better than
previous schemes as seen from Fig. 16(q) and (r).

5.3.8 Network congestion and Block job device utilization
We performed comparitive analysis to calculate average delay of data block placement among
Datanodes in the network environment. In order to calculate data block packet delay, we could
use simulation tools like NS-2 but such tools do not provide Hadoop data block packet
libraries. Therefore, we calculated the delay by executing program at multiple Datanodes. We
executed 3000 random data blocks over Hadoop cluster to perform data placement over
OPTAS, DDR, IDP, IBP and RDP schemes. We evaluated that OPTAS and DDR are having
default Hadoop parameters and were consuming an average delay time of 12 and 11 mins
respectively. IDP consumed 9 mins while IBP consumed 8.6 mins. Our proposed RDP scheme
consumed 7.9 mins for processing data blocks on Hadoop cluster as seen from Fig. 16(s). Thus,
RDP has performed averagely 8% better than previous schemes.
We further performed comparitive analysis to calculate storage media utilization ratio over
OPTAS, DDP and RDP. The purpose of computing device utilization ratio is to calculate and
compare scheme awareness of storage-tier in Hadoop cluster. For this purpose, we executed
300 MB data blocks of wordcount program and observed that OPTAS and DDP execute HDD
(Disk Drive) data blocks, while RDP executed SSD and RAM data blocks as seen from Fig.
16(t). Therefore, we concluded that, RDP is the only scheme among all state-of-art schemes
that utilizes all data blocks for available storage devices i.e. HDD, SSD and RAM.

6. Conclusion
This paper proposes Robust Data Placement (RDP) scheme to efficiently process data blocks
in Hadoop cluster. The RDP scheme systematically process data blocks by firstly generating
in-place job processing configurations through MSM, MFG and CCR modules. Secondly, it
deploys configurations to Initial Data Placement through map files. Finally, it process data
blocks through deploying map files in respective Namenode and Datanodes. The experiments
have shown that RDP is an efficient scheme and accelerate Hadoop cluster by reducing
unbalanced workload, data block network congestion, efficient usage of storage media and
decreased HDFS integrity problems.
In the future, we will explore multi homing issues, which enable Hadoop cluster to perform
data placement in multiple networks at the same time.

References
[1] J. K. Verma and C. P. Katti, "Study of Cloud Computing and its Issues: A Review," Smart

Computing Review, vol. 4, no.5, pp. 389-411, October 2014. Article (CrossRef Link).
[2] S. Khalil, S. A. Salem, S. Nassar and E. M. Saad, “MapReduce performance in heterogeneous

environments: a review,” International Journal of Scientific & Engineering Research, vol. 4, no. 4,
pp. 410-416, 2013. Article (CrossRef Link).

http://dx.doi.org/10.6029/smartcr.2014.05.005
http://www.ijser.org/researchpaper%5CMapreduce-Performance-in-Heterogeneous-Environments-A-Review.pdf

4086 Qureshi et al.: RDP: A storage-tier-aware Robust Data Placement strategy
for Hadoop in a Cloud-based Heterogeneous Environment

[3] Apache Hadoop Documentation. Article (CrossRef Link).
[4] C. W.Lee, K. Y. Hsieh, S. Y. Hseih and H. C. Hsiao, “A Dynamic Data Placement Strategy for

Hadoop in Heterogeneous Environments,” Journal of Big Data Research, vol. 1, pp. 14-22, 2014.
Article (CrossRef Link).

[5] C. Lee, H. Huang and S. Hsieh, “IDP: An Innovative Data Placement Algorithm for Hadoop
Systems,” in Proc. of Intelligent Systems and Applications: Proceedings of the International
Computer Symposium (ICS), IOS Press, pp. 49, 2015. Article (CrossRef Link).

[6] S. Lili, Y. Yang, Z. Xiong and X. Zhao, “Intelligent Block Placement Strategy in Heterogeneous
Hadoop Clusters,” Journal of Convergence Information Technology, vol. 8, no. 8, 2013.
Article (CrossRef Link).

[7] W. Changjian, Y. Qin, Z. Huang, Y. Peng, D. Li and H. Li, “OPTAS: Optimal Data Placement in
MapReduce,” in Proc. of Int. Conf. on Parallel and Distributed Systems Parallel and Distributed
Systems (ICPADS), pp. 315-322, 2013. Article (CrossRef Link).

[8] J. C. S. Anjos, I. Carrera and W. Kolberg, A. Luis Tibola, L. B. Arantes and C. R. Geyer, “MRA++:
Scheduling and data placement on MapReduce for heterogeneous environments,” Future
Generation Computer Systems, vol. 42, pp. 22-35, 2015. Article (CrossRef Link).

[9] L. Meng, W. Zhao, H. Zhao and Y. Ding, “A Network Load Sensitive Block Placement Strategy for
HDFS,” KSII Transactions on Internet and Information Systems, vol. 9, no. 9, pp. 3539-3558, 2015.
Article (CrossRef Link).

[10] Y. Fan, W. Wu, H. Cao, H. Zhu, X. Zhao and W. Wei, “A Heterogeneity-aware Data Distribution
and Rebalance Method in Hadoop Cluster,” in Proc. of ChinaGrid Annual Conference
(ChinaGrid), IEEE, pp. 176-181, 2012. Article (CrossRef Link).

[11] J. S. Yedidia, “Message-passing algorithms for inference and optimization,” Journal of Statistical
Physics, vol. 145, no. 4, pp. 860-890, 2011. Article (CrossRef Link).

[12] M. Khosla, “Message Passing Algorithms,” PHD thesis, 9 , 2009. Article (CrossRef Link).
[13] Z. Ghahramani, “An introduction to hidden Markov models and Bayesian networks,” International

Journal of Pattern Recognition and Artificial Intelligence, vol. 15, no. 1, pp. 9-42, 2001.
Article (CrossRef Link).

[14] Ajit Singh, EM Algorithm, 2005. Article (CrossRef Link).
[15] G. D. Forney, “The viterbi algorithm,” in Proc. of the IEEE, vol. 61, no. 3, pp. 268-278, 1973.

Article (CrossRef Link).

Nawab Muhammad Faseeh Qureshi received the B.E degree in Software
Engineering from Mehran University of Engineering and Technology, Pakistan, in 2006
and M.E degree in Information Technology from Mehran University of Engineering and
Technology, Pakistan, in 2013. Currently, he is working for Ph.D. in Department of
Computer Science and Engineering at Sungkyunkwan University, Korea. His research
interests include big data platform and cloud computing.

Dong Ryeol Shin received the B.S., M.S., and Ph.D. degrees in Electrical Engineering
from the Sungkyunkwan University in 1980, the Korea Advanced Institute of Science and
Technology (KAIST) in 1982, and the Georgia Institute of Technology in 1992,
respectively. During 1992-1994, he had worked for Samsung Data Systems, Korea,
where he was involved in the research of Intelligent Transportation Systems. Since 1994,
he has been with the Department of Computer Science and Engineering at
Sungkyunkwan University where he is currently a Professor in Network Research Group.
His current research interests lie in the areas of mobile network, ubiquitous computing,
cloud computing, and bioinformatics. And he is actively involved in the security of
vehicular area networks, and the implementation and analysis of big data platform,
applicable to 3D image processing of robotic arms.

http://hadoop.apache.org/docs/current/index.html
http://dx.doi.org/10.1016/j.bdr.2014.07.002
https://books.google.co.kr/books?hl=en&lr=&id=dOqbCAAAQBAJ&oi=fnd&pg=PA49&dq=IDP:+An+Innovative+Data+Placement+Algorithm+for+Hadoop+Systems&ots=PcFTPH_V5N&sig=vo9VomkiCGmx82kTt-3RKCiWn1g
http://connection.ebscohost.com/c/articles/100182945/intelligent-block-placement-strategy-heterogeneous-hadoop-clusters
http://dx.doi.org/10.1109/icpads.2013.52
http://dx.doi.org/10.1016/j.future.2014.09.001
http://dx.doi.org/10.3837/tiis.2015.09.014
http://dx.doi.org/10.1109/chinagrid.2012.22
http://dx.doi.org/10.1007/s10955-011-0384-7
https://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjx74iumZHOAhWDX5QKHeDNAxwQFggaMAA&url=https%3A%2F%2Fpeople.mpi-inf.mpg.de%2F%7Emkhosla%2Fpapers%2FThesis.pdf&usg=AFQjCNHx9mt2ElU7R004trupg1v3ek6aJw&sig2=DA8cEJQjxlsp7kJfiw8ERw&bvm=bv.128153897,d.dGo
http://dx.doi.org/10.1142/s0218001401000836
http://www.cs.cmu.edu/%7Eawm/10701/assignments/EM.pdf
http://dx.doi.org/10.1109/proc.1973.9030

