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Abstract 
 

For intermittently connected wireless sensor networks deployed in hash environments, 
sensor nodes may fail due to internal or external reasons at any time. In the process of data 
collection and recovery, we need to speed up as much as possible so that all the sensory 
data can be restored by accessing as few survivors as possible. In this paper a novel 
redundant data storage algorithm based on minimum spanning tree and quasi-randomized 
matrix—QRNCDS is proposed. QRNCDS disseminates k source data packets to n sensor 
nodes in the network (n>k) according to the minimum spanning tree traversal mechanism. 
Every node stores only one encoded data packet in its storage which is the XOR result of 
the received source data packets in accordance with the quasi-randomized matrix theory. 
The algorithm adopts the minimum spanning tree traversal rule to reduce the complexity of 
the traversal message of the source packets. In order to solve the problem that some source 
packets cannot be restored if the random matrix is not full column rank, the 
semi-randomized network coding method is used in QRNCDS. Each source node only 
needs to store its own source data packet, and the storage nodes choose to receive or not. In 
the decoding phase, Gaussian Elimination and Belief Propagation are combined to improve 
the probability and efficiency of data decoding. As a result, part of the source data can be 
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recovered in the case of semi-random matrix without full column rank. The simulation 
results show that QRNCDS has lower energy consumption, higher data collection 
efficiency, higher decoding efficiency, smaller data storage redundancy and larger network 
fault tolerance. 
 
 
Keywords: intermittently connected wireless sensor networks, data storage algorithm, 
minimum spanning tree, network coding, quasi-randomized matrix 
 
 
 
 

1. Introduction 

Wireless sensor networks [1-2] are data-centric networks, consisting of a large number of 
sensor nodes which have perception, processing, storage and communication capabilities. 
With the emergence of a series of new sensory devices such as video cameras, RFID 
readers and seismometers, a variety of new sensor network applications have been 
developed. This include underwater or ocean sensor networks [3], underground sensor 
networks [4], volcanic eruptions monitoring sensor networks [5-6], and et al. The majority 
of above networks are deployed in challenging environments. In such scenarios, base 
stations are usually far away from the sensor networks due to environmental constraints [7]. 
And sensor nodes including sink nodes may fail due to various reasons such as 
storage/energy depletion, hardware failures, natural destructions and even animal attacks 

[8]. The failures of sensor nodes will lead to data loss and communication link’s 
breakdown. Therefore, how to design an effective data storage algorithm to preserve 
sensory data in intermittently connected sensor networks has become a hot research area in 
recent years. 

This paper focuses on the data storage problem of intermittently connected wireless 
sensor networks [9] (ICWSNs) deployed in hash environments. Such networks are usually 
unattended, which means that sink nodes may appear periodically to collect sensory data, 
or fixed sink nodes are vulnerable to natural disasters and artificial attacks. In order to 
prevent data loss caused by node failures, redundant fault-tolerant measures [10-15] must 
be taken to store the sensory data throughout the network. For the purpose of realizing 
efficient storage and fast collection of sensory data, an energy-efficient redundant data 
storage algorithm QRNCDS based on MST (Minimum Spanning Tree) and 
quasi-randomized network coding is proposed in this paper. QRNCDS has following 
characteristics: 1) The traversal message complexity is reduced to ( )nO  by utilizing MST 
rule(source nodes only need to be forwarded n-1 times ; 2) Every sensor node encodes all 
the received source data packets into an encoded data packet according to 
quasi-randomized matrix theory, which achieves better network fault tolerance n-k; 3) The 
data decoding efficiency is improved by utilizing joint decoding method of Gaussian 
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Elimination and Belief Propagation algorithm. Data Collectors just need to visit k+10 
survived nodes to achieve the decoding probability of 100%.  

The rest of this paper is organized as follows. Section 2 reviews the related works. In 
section 3, we introduce the network model of ICWSNs. Section 4 gives the details and 
theoretical analysis of the QRNCDS algorithm. The extensive simulations are conducted in 
section 5. Section 6 concludes the paper and points out potential future research directions. 

2. Related Work 
In the challenging monitoring regions, sensor nodes may become more unreliable due to 
the external environment. In order to ensure the availability of sensory data packets, we can 
take redundant fault-tolerant approaches to storing them, that is to say, each sensory data 
generated by each source node is stored on multiple different nodes in a redundant manner. 
When some nodes fail, data collector can recover the sensory data by visiting other 
survived nodes. Currently, there are two typical redundant methods: one is based on 
replicas [10-11] and the other one is based on network coding [12-15]. 

Redundant data storage methods based on replicas duplicate each sensory data into 
several replicas which incur extra overhead. Especially when the node’s failure probability 
becomes high, in order to ensure the persistency and availability of sensory data, the 
network needs to store a huge number of redundant replicas, which is a great challenge for 
nodes with limited storage space and causes great storage waste. In addition, in the data 
collection process, with the increase in access nodes, the rate of collecting new source data 
decreases significantly, which is unfavorable to the rapid recovery of data. At the same 
time, redundant data storage methods based on network coding can overcome this 
shortcoming by encoding the k source data packets into n encoded data packets and storing 
them on every node in the network. In the network-coding based methods, each sensor 
node can carry multiple source data packets’ information by just consuming one storage 
space, which greatly improves the utilization of nodes’ storage space and eases the storage 
pressure of sensor nodes. The most representative and related algorithms based on network 
coding are LTCDS-I algorithm [14] and a low visiting cost storage algorithm (LVCDS) 
[15]. 

On the basis of LT codes, Aly [14] proposes a new kind of distributed data storage 
algorithm for WSNs called LTCDS-I. LTCDS-I algorithm is based on a certain degree 
distribution function (Ideal Soliton distribution or Robust Soliton distribution). Each 
sensor node stores an encoded data packet by first randomly choosing a degree value d 
from the degree distribution, and then chooses d distinct packets from k source packets 
uniformly with probability k/d . The encoded data packet is the bitwise exclusive-or 
(XOR) of the d chosen source packets. LTCDS-I can be easily implemented, but its 
traversal speed is very slow. In order to transverse the whole network nodes, each source 
packet must be forwarded over nlnn.54  times. Besides, its decoding performance is 
limited to the collecting order of encoded data packets with different degrees. In the early 
decoding stage, since fewer packets with low degrees are collected, most packets with high 
degrees cannot be successfully decoded, the decoding efficiency is very low at this time. 
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And to fully recover all the source packets, collector needs to visit a large number of 
survived nodes, which will incur high energy cost. 

With the purpose of overcoming the drawbacks of LTCDS-I algorithm, Xiao Yilong 
[15] proposes a new storage algorithm (LVCDS) with low transversal cost. LVCDS 
preferentially forwards source packets to nodes that have been visited fewer times and have 
more neighboring nodes according to the directional random walk rule during the traversal 
process of source packets, which can reduce invalid forwarding of source packets to some 
extents. And compared with LTCDS-I, LVCDS decreases the communication energy 
consumption by 55.6%. During the encoding process, LVCDS adopts random coding 
instead of LT coding, and in the decoding phase, the collector can successfully recover all 
the source data packets from any k+10 survived encoded data packets, which greatly 
improves decoding efficiency and reduces decoding cost. However, there are two distinct 
limitations in this algorithm: 1) The successful decoding ratio is entirely dependent on the 
rank of the random matrix (the coefficient matrix of all the collected encoded 
packets).Only when the random matrix is full column rank, can user decode data 
successfully and recover all the source packets at one time. Otherwise, no source packets 
can be recovered. 2) Although LVCDS halves the number of forwarding of source packets 
to nlnn2 , its traversal message complexity still remains ( )nlnnO . 

In order to develop an efficient data storage scheme, authors in [16] first design a system 
that integrates the Virtual Broking Coding (VBC) data storage scheme in the IoT realm. 
Then, they propose an algorithm called Dynamic Adaptive Virtual Broking Coding 
(DA-VBC) that adapts dynamically the packet redundancy level adopted in VBC to the 
optimal redundancy level, regarding the actual condition of the network, in order to ensure 
a reliable data storage and data retrieval. But they don’t take the harsh environments into 
account. Compared to [16], we consider that in the harsh environment, efficient storage and 
rapid collection are two key issues. Based on the combination of the minimum spanning 
tree and the semi-random matrix, a new energy efficient and fast decoding algorithm, 
QRNCDS, is proposed to simplify the coding process and improve the recovery rate of the 
source packet. 

In-network storage is an effective technique for avoiding network congestion and 
reducing power consumption in continuous data collection in wireless sensor networks. 
Preference [17] presents an efficient approach to update data at storage nodes to maintain 
data consistency at the storage nodes without decoding out the old data and re-encoding 
with new data. They studied a transmission strategy that identifies a set of storage nodes for 
each source sensor that minimizes the transmission cost and achieves ubiquitous access by 
transmitting sparsely using the sparse matrix theory. In [17] they assume that all sensors 
know their locations in the sensor field. But in our paper, each sensor node transmits its 
geographic position information to the central coordinator. After receiving all the nodes’ 
geographic position information, the central coordinator calculates the minimum spanning 
tree of the network and sends the related result back to all sensor nodes.    

According to the above discussion, it can be seen that the redundant data storage strategy 
is more applicable than non-redundant data storage strategy. However, the redundant data 
storage strategy based on replicas is extremely wasteful for the storage of the sensor nodes, 
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especially in harsh environments. Coding-based redundancy storage strategy overcomes 
the shortcomings of replicas. It saves storage space and greatly improves the persistence of 
the data. But to further enhance its performance in harsh environments, the following three 
issues need to be addressed: 1) Most of the existing coding schemes adopt random walk 
traversal, the efficiency is low. 2) Most of the existing coding schemes need to access 
( ) ( )1 0k ε ε+ >  surviving nodes to decode successfully, and the decoding efficiency is low. 

3) Simply using the Gaussian Elimination for decoding is not conducive to the restoration 
of source data. Once the generated matrix of encoded data packets is not full column rank, 
no one source data can be stored. 

To solve the problem of slow traversal speed and the low recovery efficiency of source 
data packets in the existing coding schemes, we study a redundant quasi-randomized 
network coding based data storage algorithm-QRNCDS based on the minimum spanning 
tree. In the process of traverse the whole network node, by applying the minimum spanning 
tree rules, QRNCDS can reduce the forwarding number of each source packet to n-1 times. 
In the coding process, each sensor node will receive data from different source with certain 
probability according to the quasi-random matrix. So  some nodes in the network only store 
a single source data packet which can  facilitate the decoding operation. In order to avoid 
the situation where the node does not store any data, QRNCDS also sets a cumulative 
counter for each sensor node, which ensuring the effective storage of each node, as well as 
improving the probability of data survivability and the efficiency of recovery. 

3. Network Model 
The intermittently connected wireless sensor network studied in this paper can be 
represented as an undirected connected graph ( )E,VG , where { }n,,,,V 321=  is n uniformly 
deployed sensor nodes and E is the set of m edges. The system model is shown in 
Fig.1.There are three kinds of nodes in the system: source nodes, storage nodes and the 
sink node. There are k source nodes in the area, denoted as { }k,,,,Vs 321= , which generate 
sensory data (we assume that each data packet generated by each source node has the same 
unit size).And n-k storage nodes, who are responsible for storing sensory data for source 
nodes. The connections between the sink node and common sensor nodes are intermittent. 
In this paper, we assume that all the sensor nodes have the same transmission radius R. In 
order to ensure the network’s connectivity, R must satisfy formula (1) [15]: 
 

( ) 21 /n/nlnbR π≥                                                                (1) 

 

Where b is a constant and is greater than 1. 
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Fig. 1. System model of intermittently connected wireless sensor network 

 

4. Design of QRNCDS Algorithm and Theoretical Performance 
Analysis 

To solve the slow traversal problem and improve the low decoding efficiency of existing 
algorithms, we design a novel distributed data storage algorithm based on minimum 
spanning tree rule and a quasi-randomized matrix. 
 

4.1 Quasi-randomized Matrix 
The quasi-randomized matrix introduced in this paper is similar to the random matrix 

defined in literature [15] and its specific definition is as follows:  
For a matrix ( ) k,,,jn,,,i,rR ijkn  21;21 ===× , if the matrix has k rows meeting the 

conditions that in each row only one element’s value is“1”, the remaining elements’ value 
are all “0”, and the positions of the element “1” are all different from each other. And the 
remaining kn − rows in knR × meet the conditions that all the elements are independent of 
each other and following the 0-1 distribution defined as formula (2), then knR × can be called 
a quasi-randomized matrix. 
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Where a is a constant and makes 21 /k/klna ≤ .According the definition of the 
quasi-randomized matrix, knR × is full column rank. In order to determine the proper value of 
coefficient a, we can get the full column rank probability of sub-matrix ( ) kkR ×+′ ε (randomly 
selected) of knR × by setting up MATLAB simulation environment. We change the 
parameter a and ( )nk ≤+ εε  to observe the change of the full column rank probability. The 
experimental results are shown in Table 1, where 100=n , 30=k . As it can be seen from 
the table, with the increase of the parameter a and ε , the full column rank probability of 
( ) kkR ×+′ ε becomes higher. When 2≥a , the full column rank probability of ( ) kkR ×+′ ε  reaches 

more than 94%. In this paper, in order to ensure the full column rank of quasi-randomized 
matrix with higher probability and at the same time make the matrix more sparse, we set a 
as 2.5. 
 
 

Table 1. FULL COLUMN RANK of ( ) kkR ×+′ ε  with RESPECT to the PARAMETER a and ε  
 4=ε  8=ε  12=ε  16=ε  20=ε  

a=1 0.208 0.425 0.624 0.795 0.868 

a=1.5 0.611 0.767 0.840 0.906 0.944 

a=2 0.941 0.961 0.985 0.992 0.997 

a=2.5 0.993 0.999 1 1 1 

a=3 0.995 1 1 1 1 

 

4.2 The Fundamentals of QRNCDS Algorithm 
In QRNCDS, source packets are traversed from parent nodes to child nodes layer by 

layer according to the established minimum spanning tree rooted from source nodes and 
each node encodes the received packets with given probability according to the 
quasi-randomized matrix theory. The whole algorithm process can be divided into the 
following four phases: 

 
1) Initialization phase. Each sensor node transmits its geographic position information to 

the central coordinator. After receiving all the nodes’ geographic position information, the 
central coordinator calculates the minimum spanning tree of the network and sends the 
related result back to all sensor nodes. After receiving the information from the central 
coordinator, each sensor node ( )nuu ≤≤1 records its neighboring nodes in the 
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MST(Minimum Spanning Tree) into list ( )unl , initializes the encoded packet as 0 
( ( )nuYu ≤≤= 10 ) and empties the received source packets list ( )uidl . Each source node 
( )kvv ≤≤1  encapsulates the sensory data into a source data packet ( )vvv X,IDpacket = , 

where vID represents the ID number of the source node and vX represents the sensory data. 
To make full use of storage nodes’ available storage space, each storage node 
( )niki ≤≤+1 adds a counter ( )iscount to record the number of different source packets that 

have visited it and sets the counter’s initial value to zero( ( ) 0=iscount ). The MST must 
be  calculated again while the network topology is changed by the intermittently connected 
environments. 

2) Network coding phase. Source data packets are all forwarded layer by layer based on 
the MST path. At the starting point, each source node ( )kvv ≤≤1  updates its stored encoded 
packet as vvv XYY ⊕= , inserts vID into the received packet list ( )vidl , and forwards vpacket to 
its neighboring nodes in turn according to the neighboring node list ( )vnl .  

For both source nodes and storage nodes in the network, when receiving ( )kvpacketv ≤≤1  

from its neighboring node ( )nww ≤≤1 , node ( )nuu ≤≤1  will first determine whether it is a 
source node or not. If u is a source node, it inserts vpacket  into its forwarding queue directly.  

If node u is a storage node, it will first increase its counter value by 1, and then judge 
whether ( )uscount  is equal to k or not, if ( ) kuscount = and the received source packets’ ID 
number list ( )uidl is empty, then node u will receive vpacket with the probability of 100% , 
update uY as vu XY ⊕ , and insert vID into ( )vidl ; otherwise, node u will receive vpacket with the 
probability of k/klna . And after that, node u puts vpacket  into the forwarding queue.  

Before forwarding vpacket , node u needs to check its neighboring node list ( )unl , if ( )unl  
has only one node w and w is the previous-hop node of vpacket , node u will discard this 
packet; otherwise, node u will forward vpacket  to all the neighboring nodes except the node 
w according to the neighboring node list ( )unl .  

The flowchart of network coding phase is shown in Fig. 2. 

3) Data storage phase. When all network nodes’ forwarding queues are empty, which 
means source packets have visited all the leaf nodes in the tree, the network coding process 
is finished. At this time, k sensory data have been redundantly stored on the whole network 
nodes.  
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Fig. 2. Flowchart of network coding phase 
 

4) Data decoding phase. At this stage, collector randomly collects η+k survived 
encoded packets and the corresponding received source packets’ ID number lists. We 
denote these η+k encoded packets as η+= k,,,i,Yi 21  respectively. The column vector 
consisting of these η+k encoded packets is denoted as [ ]TkY,,Y,YY η+= 21 . Since each 
encoded packet is the linear combination of k source data packets, we can obtain the 
coefficient generated matrix ( ) kkG ×+η according to ( ) η+= k,,,i,iidl 21 . On the basis of ( ) kkG ×+η , 
we can obtain the following linear equations(3): 

            

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) Y

X

X
X

G

YXk,kGX,kGX,kG

YXk,GX,GX,G
YXk,GX,GX,G

k

kk

kk

k

k

=





















⋅⇒











=+⊕⊕+⊕+

=⊕⊕⊕
=⊕⊕⊕

×+

+











2

1

21

221

121

21

22212
12111

η

ηηηη

       (3) 



236                       Jun Wang et al.: A Novel Redundant Data Storage Algorithm Based on Minimum Spanning Tree  
and Quasi-randomized Matrix 

According to the non-homogeneous linear equations’ theory, only when 
( )( ) ( )( ) kY,GRGR kkkk == ×+×+ ηη can formula (3) have a unique solution. The detailed decoding 

steps are as follows: 

a) Determine whether the η+k collected packets contain k source data packets or not, if 
they already have these k source packets, there is no need to decode; otherwise, continue to 
step b);  

b) If the coefficient generated matrix ( ) kkG ×+η is full column rank, and the rank of 

( )( )Y,G kk ×+η is k, Gaussian Elimination method is used to decode data; otherwise, skip to 
step c);  

c) Belief Propagation algorithm is used to decode data. First, we perform progressive 

scanning for the matrix to find the row that contains only one element of 1 and record its 

position in the matrix as (i,j), where kjki ≤≤+≤≤ 1,1 η . Then, we use the i-th encoded 

data packet to recover the j-th source data. After this, we go back to ( ) kkG ×+η  , scan all the 

elements of the j-th column of ( ) kkG ×+η  , set all elements of 1 to 0 and perform an XOR 

operation between the corresponding encoded data packet and the recovered j-th source 

data. We repeat these steps until we cannot find any rows that contain only one element of 

1.  

The pseudo-code of the four phases of the QRNCDS is shown in Table 2. 
 

Table 2. PSEUDO-CODE of the four phases of the QRNCDS 

1 /* Initialization stage */ 

2 Each sensor node transmits its geographic position information to the central coordinator. 

After receiving all the nodes’ geographic position information, the central coordinator 

calculates the network’s minimum spanning tree and sends the results back to sensor nodes. 

Each sensor node ( )nuu ≤≤1  records its neighboring nodes in the minimum spanning tree into 

the list ( )unl ;The MST must be  calculated again while the network topology is changed by the 

intermittently connected environments. 

3 for each source node ktov 1=  

4    Encapsulate sensory data Xv into the source data packet ( )vvv XIDpacket ,= ; 
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5 end for 

6 for each sensor node ntou 1=  

7    Initialize its encoded data packet as 0=uY ; 

8 End for 

9 for each storage node ntoki 1+=  

10 Reset cumulative counter: ( ) 0=iscount ; 

11 end for 

12 for the network topology is changed 

13     Calculate MST again; 

14 end for 

15 /* Network coding and data storage stage */ 

16 for each source node ktov 1=  

17    Update its encoded data packet as vvv XYY ⊕=  and record vID  into the ID number list 

( )vidl ; 

18    Forward vpacket  to all the neighboring  nodes in turn according to ( )vnl ; 

19 end for 

20 for each sensor node ntou 1=  

21    for each ktov,packetv 1= that arrives at node u 

22       if  u is storage node( nuk ≤≤+1 ), then 

23 Update cumulative counter: ( ) ( ) 1+= uscountuscount ; 

24          if ( ) kuscount < or ( ( ) kuscount ==  and ( ) φ≠uidl ) , then 

25 ( )1randp = ; 

26             if k/klnap < , then 

27     Update its encoded data packet as vuu XYY ⊕=  and insert vID  into ( )uidl ; 

28             end if 

29          else 

30     Update its encoded data packet as vuu XYY ⊕=  and insert vID  into ( )uidl ; 

31 end if 

32  end if 

33       Put vpacket into the forwarding queue and check ( )unl  before forwarding vpacket : 
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34 if ( )unl  has only one node w and w is the previous-node of vpacket , then 

35 vpacket  arrives at a leaf node, node u discards vpacket ; 

36 else 

37      Forward vpacket  to all the neighboring nodes except the previous node of vpacket in 

 turn according to ( )unl ; 

38 end if 

39 end for 

40 end for 

41 /* Data decoding stage */ 

42 Collector randomly visits η+k  survived nodes and obtains η+k  encoded data packets along 

with the corresponding ID number lists; 

43 If  the η+k  have visited nodes contains k source nodes, then 

44 Obtain k source data directly; 

45 else 

46 if the generated matrix ( ) kkG ×+η  of the η+k  encoded data packets is full column rank, and 

the rank of ( )( )Y,G kk ×+η is k then 

47       Utilize Gaussian Elimination method to decode; 

48  else 

49       Utilize Belief Propagation algorithm to decode; 

50 end if 

51 end if 

 

4.3 Theoretical Analysis of QRNCDS Algorithm 
1) Applicability 
Combining the minimum spanning tree traversal rule with quasi-randomized network 

coding mechanism, In QRNCDS algorithm, source packets are distributed stored on all 
network nodes with minimum energy consumption. When a portion of nodes (including 
source nodes and storage nodes) fail, collector can still collect encoded packets from 
unfailed nodes and use joint decoding method to recover source data. That’s to say, 
QRNCDS can effectively ensure the persistent of sensory data. But considering that in the 
initialization phase of QRNCDS, each sensor node needs to communicate with the central 
coordinator, which incurs extra communication overhead and such overhead increases as 
the network size becomes larger. Therefore, QRNCDS algorithm is not suitable for 
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large-scale WSNs.   
2) Message Complexity 
In the initialization stage of QRNCDS, assuming that the average number of hops 

between each sensor node and the central coordinator is h , the total number of 
transmissions of location information and minimum spanning tree information is hn2 . In 
the network coding stage, k source data packets are transmitted ( )kn 1−  times. Therefore, 
the total message complexity of QRNCDS is ( )( )knhnO 12 −+ . 

3) Storage Cost  
Storage cost of each sensor node is consisted of three parts: 
a) Neighboring node list storage cost: each node has to store the neighboring nodes’ 

information of the minimum spanning tree. Assuming that the average number of neighbor 
is m , the cost of this storage cost is ( )mnO ∗ .  

b) Encoded packet storage cost: Since every node can at most store one encoded data 
with the same size of the source data, the encode packet storage cost is ( )nO . 

c) Received source packets’ ID number list storage cost: Since every node can at most 
receive k source packets, the cost of the ID number list is ( )n*kO . 

4）Efficiency of Storage Usage 

In this paper, we define the efficiency of storage Usage as the average number of source 
packets that each encoded packet contains. In QRNCDS algorithm, since each storage node 
have a cumulative counter, when the counter value reaches k and ID number list is empty, 
the node will receive the last arrived source packet with the probability of 100%, so the 
efficiency of storage usages is greater than or equal to 1, that is to say, there doesn’t exist 
empty storage problem. 

5) Computation Complexity 
Given that the central coordinator and data collector have powerful computation 

capability, the computation complexity in both initialization phase and decoding phase will 
not be considered in this paper. In the network coding stage, each storage node receives 
source packets with probability k/klna , so the average number of source packets that each 
storage node receives is about klnak/klnak =⋅ .In other words, each storage node conducts 
“XOR” operation klna  times. The computation complexity of QRNCDS is 
about ( )( )klnknaO − . 

6)Maximum network fault tolerance  
The maximum network fault tolerance is defined as the maximum number of nodes that 

are allowed to fail simultaneously under the premise of recovering all of the k source data. 
Since QRNCDS adopts quasi-randomized network coding mechanism, all the source nodes 
just store their own sensory data, when k source nodes survive and the other n-k storage 
nodes fail, k source data can still be recovered. And when a portion of source nodes survive, 
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collector has to visit at least k or more survived nodes to recover original k source data. 
Therefore, the maximum network fault tolerance of QRNCDS is n-k. 

7）Decoding Efficiency 

From the Table 1, we can see that when a=2.5 and 8=ε , full column rank probability 
of ( ) kkR ×+′ ε   is 99.9%. So the collector can successfully recover almost all the source data 
packets from any k+10 survived encoded data packets, which greatly improves decoding 
efficiency and reduces decoding cost. 

5. Performance Evaluation 
To verify the performance of the proposed algorithm, we conduct simulation experiments 
in the MATLAB environment and compare QRNCDS with three other algorithms: 
LTCDS-I [14], LVCDS [15] and M-RLC [17]. The simulation settings are as follows: The 
network size is 100100∗ , n sensor nodes are uniformly deployed in the square area, and the 
proportion of the source nodes is 30%. Each sensor node’s transmission radius is set to 14 
(to ensure the connectivity of the network) and the coefficient a of receiving probability is 
set to 2.5.We set the total number of transmission of source packet 
as ( )1ln ≥= cncnft (According to reference [14], only when random walk steps reach 
( )nlnnO , can network coverage reaches 100%). The main performance metrics we 

investigate are: network coverage performance and decoding performance.  

5.1 The Traversal Performance of Source Packets 
1) The network coverage  
In this paper, we use the definition of network coverage of reference [15], if there is a 

two-dimensional random graph T(n, r), the network coverage is defined as: the ratio of the 
number of different vertices visited by the random walk to the total number of vertices in 
the graph.  

In this simulation scenario, the number of sensor nodes is set to 300. Fig. 3 depicts the 
network coverage curves of QRNCDS, LTCDS-I and LVCDS respectively, where the 
horizontal axis represents the coefficient c of ft ( the number of transmission of source 
packets), and the vertical axis represents the average network coverage of each source 
packet. From the Fig. 3, it can be observed that QRNCDS achieves the best network 
coverage performance. Since QRNCDS follows minimum spanning tree rule, no matter 
how much the coefficient c is, k source packets can visit all sensor nodes and achieve 
network coverage with 100%. LVCDS’s coverage performance comes in second as 
expected, since LVCDS adopts directed random walk rule, which greatly reduces the 
number of invalid forwarding. When c is equal to 1, the network coverage can reach 98%, 
and when c is greater than 2, k source packets can visit every node. Obviously the network 
coverage performance of LTCDS-I algorithm based on simple random walk is the worst, 
only when the number of transmission is greater than 4.5nlnn(that’s to say, c>4.5), can all 
source packets visit every node. 
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Fig. 3. The experimental result of source packets’ network coverage 

 
2) The average number of transmission   
We investigate the average number of transmission of source packets required by 

QRNCDS, LTCDS-I and LVCDS to achieve full network coverage with various network 
density. Table 3 shows the results. We observe that with the network density becoming 
denser, the average number of forwarding keeps increasing in order to ensure that all the 
network nodes can be successfully traversed by source packets. In QRNCDS, each source 
packet takes only n-1 hops to cover the whole network, the value is about 9.41%~10.59% 
of LVCDS algorithm and 4.11%~5.17% of LTCDS-I algorithm. Thus it can be seen that 
adopting QRNCDS algorithm can reduce communication energy greatly. Compared with 
LVCDS, it reduces energy consumption by an average of 89.73% and compared with 
LTCDS-I, it reduces energy consumption by an average of 95.08%.  

 

Table 3. THE EXPERIMENTAL RESULTS of AVERAGE NUMBER OF FORWARDING  
 QRNCDS(f

t1) 

LVCDS(ft2

) 

LTCDS-I(ft

3) 
ft1/ft2(%) ft1/ft3(%) 

n=300,k=9

0 
299 3176 7283 9.41% 4.11% 

n=400,k=1

20 
399 3768 8584 10.59% 4.65% 

n=500,k=1

50 
499 4748 9920 10.51% 5.03% 
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n=600,k=1

80 
599 5766 11857 10.39% 5.05% 

n=700,k=2

10 
699 6770 13775 10.32% 5.07% 

n=800,k=2

40 
799 7910 15623 10.10% 5.11% 

n=900,k=2

70 
899 8766 17483 10.26% 5.14% 

n=1000,k=

300 
999 9442 19307 10.58% 5.17% 

 

5.2 Data Recovery Performance 
1)Decoding performance  
In this simulation scenario, the total number of sensor nodes in the network is set to 900 

and the node failure probability fp is set as 0.3 and 0.8 respectively. Fig. 4 and Fig. 5 show 
the average recovery ratio of source data packets. From the two figures, we can see that 
when the node failure probability is small ( 30.p f = , there are adequate survived nodes), the 
three algorithms can achieve the goal of successful decoding by collecting a certain number 
of survived packets, where LTCDS-I needs to visit about 390 survived nodes to make the 
source data recovery ratio reach 1, while QRNCDS and LVCDS only need to visit 280 
survived nodes to recover all the original 270 source data, their recovery costs are 
approximately reduced by 28.21%. When the node failure probability is comparatively 
high ( 80.p f =  which means very few nodes survive in the network), all the algorithms’ 
successful decoding ratio cannot reach 1. The decoding ratio of LVCDS keeps 0, this can 
be explained by the fact that LVCDS utilizes Gaussian Elimination method to decode, 
when it collects less than 270 survived packets, the coefficient matrix cannot be full 
column rank, so it cannot recover any source packet. For QRNCDS and LTCDS-I, the 
Belief Propagation algorithm is used during the decoding process, some portion of source 
data still can be recovered. Therefore, compared with the other two algorithms, QRNCDS 
is more suitable for working in hash environments. No matter how much the node failure 
probability is, QRNCDS can always ensure higher decoding ratio.  
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Fig. 4.  Decoding performance with 30.fp =  
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Fig. 5. Decoding performance with 80.fp =  

 
 

Next, we conduct experiments to compare the performance of M-RLC proposed in 
Preference [17] with QRNCDS in our paper. 
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Fig. 6. Decoding probability versus network size 

 
Fig. 6 shows the decoding probability of the data collector as a function of the network 

size. We can see that our approach almost achieve 100% decoding probability with 
increasing network size, which is greater than M-RLC [17]. The reason is that QRNCDS 
adopts the joint decoding algorithm of Gaussian elimination and belief propagation 
algorithm to improve the probability and efficiency of data decoding. 

 
2) Average Network Fault Tolerance 
We test the average number of nodes that are allowed to fail simultaneously when 

decoding ratio can reach 1. The numerical results are shown in Table 4. We can find that 
QRNCDS and LVCDS have the same average network fault tolerance, its value is 
approximately n-k-10, which is more than twice the value achieved by LTCDS-I. With the 
increase of the number of sensor nodes, the difference among these three algorithms is 
gradually narrowing, but QRNCDS and LVCDS still outperform LTCDS-I in terms of 
fault tolerance.  

 
Table 4. THE AVERAGE NETWORK FAULT TOLERANCE of Each ALGORITHM 

 QRNCDS(nft

1) 

LVCDS(nft2) LTCDS-I(nft

3) 
nft1/nft2 nft1/nft3 

n=300,k=90 200 200 120 1 1.6667 

n=400,k=120 270 270 170 1 1.5882 

n=500,k=150 340 340 220 1 1.5455 

n=600,k=180 410 410 270 1 1.5185 

n=700,k=210 480 480 330 1 1.4545 
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n=800,k=240 550 550 410 1 1.3415 

n=900,k=270 620 620 510 1 1.2157 

6. Conclusion and Future Work 
In this paper, we first study the data storage problem of intermittently connected wireless 
sensor networks. Then, we analyze the advantages and disadvantages of replicas storage 
strategy and coding strategy. Considering that existing storage solutions based on network 
coding have problems of slow traversal and low decoding efficiency, we optimize LT 
code-based and randomized redundant storage algorithm and design an energy-efficient 
distributed data storage algorithm QRNCDS which is based on minimum spanning tree and 
quasi-randomized matrix. Compared with other algorithms, QRNCDS realizes full 
network coverage of source data packets in linear time, which greatly saves 
communication costs, and simplifies data encoding and storage process by use of 
quasi-random network coding and joint decoding method (Source nodes don’t need to 
calculate degree and only stores their own sensory data). QRNCDS can also improve the 
decoding efficiency of source data packets. The experimental results show that QRNCDS 
can greatly improve the recovery efficiency of source packets in the case of rapid traversal 
of the whole network. It is also strongly applicable to wireless sensor networks deployed in 
harsh environments. However, there are also some shortcomings in this algorithm. 
QRNCDS is based on high-powered central coordinator to calculate the network’s 
minimum spanning tree and every sensor node needs to know its location information in 
advance. In the future research, we may consider how to utilize cooperative 
communication mechanism among neighboring nodes to realize reliable and efficient data 
storage. Recently more and more machine learning algorithms such as SVM have been 
applied to the research of wireless sensor networks, but there are some limitations in 
traditional SVM algorithm, we are very happy to see there are a lot of innovations to 
improve traditional SVM and machine learning approaches [18-21]. Machine learning 
approach can be applied to our work in our future research. 
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