• Title/Summary/Keyword: network resiliency

Search Result 23, Processing Time 0.02 seconds

Relationships Among Emotional Support from Social Network, Ego-Resiliency, and Role Conflict of Teachers in Kindergartens and Day Care Centers (유아교육기관 교사의 사회적 정서 지지와 자아탄력성 및 역할갈등간 관계)

  • Min, Ha-Yeoung;Gwon, Gi-Nam
    • Journal of Families and Better Life
    • /
    • v.27 no.5
    • /
    • pp.91-99
    • /
    • 2009
  • This study investigates the relationships among emotional support from social network, ego-resiliency, and role conflict of teachers in kindergartens and day care centers. The subjects were 192 teachers who worked in kindergartens or child care centers in Daegu and Gyeongbuk Province. Questionnaires, which require self-report by teachers, were used to investigate the emotional support from social network, ego-resiliency, and role conflict. The collected data were analyzed by Pearson's correlation, single and multiple regressions, using SPSS Win 15.0. The results are as follows. (1) Emotional support from social network and ego-resiliency was negatively associated with the role conflict of teachers in kindergartens and day care centers. (2) Emotional support from social network was positively associated with ego-resiliency. (3) Emotional support from social network partly exerted indirect effects on role conflict mediated by ego-resiliency. But direct effect of emotional support from social network on role conflict was more than the indirect effect. These results indicate that a higher level of emotional support from social network is more likely to lower role conflict of teachers.

Resilient Packet Transmission (RPT) for the Buffer Based Routing (BBR) Protocol

  • Rathee, Geetanjali;Rakesh, Nitin
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.57-72
    • /
    • 2016
  • To provide effective communication in the wireless mesh network (WMN), several algorithms have been proposed. Since the possibilities of numerous failures always exist during communication, resiliency has been proven to be an important aspect for WMN to recover from these failures. In general, resiliency is the diligence of the reliability and availability in network. Several types of resiliency based routing algorithms have been proposed (i.e., Resilient Multicast, ROMER, etc.). Resilient Multicast establishes a two-node disjoint path and ROMER uses a credit-based approach to provide resiliency in the network. However, these proposed approaches have some disadvantages in terms of network throughput and network congestion. Previously, the buffer based routing (BBR) approach has been proposed to overcome these disadvantages. We proved earlier that BBR is more efficient in regards to w.r.t throughput, network performance, and reliability. In this paper, we consider the node/link failure issues and analogous performance of BBR. For these items we have proposed a resilient packet transmission (RPT) algorithm as a remedy for BBR during these types of failures. We also share the comparative performance analysis of previous approaches as compared to our proposed approach. Network throughput, network congestion, and resiliency against node/link failure are particular performance metrics that are examined over different sized WMNs.

Impacts of Hierarchy in Ethernet Ring Networks on Service Resiliency

  • Lee, Kwang-Koog;Ryoo, Jeong-Dong;Kim, Young-Lok
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.199-209
    • /
    • 2012
  • In transport networks, a multi-ring architecture is very useful to facilitate network planning and to design and provide more resilient services for customers. Unlike traditional synchronous optical network multi-rings, the service resiliency of Ethernet-based multi-rings is significantly impacted by the ring hierarchy because a link or node failure in a certain level ring triggers filtering database flush actions in all higher level rings as well as in the ring with the failure, and consequently a large amount of duplicated data frames may be flooded. In this paper, we investigate how the ring hierarchy impacts the service resiliency of multi-ring networks. Based on extensive experiments on various single- and multiple-link failures, we suggest two effective inter-ring connection rules to minimize the transient traffic and to ensure more resilient multi-ring networks. In addition, we consider a flush optimization technique called e-ADV, and show that the combination of e-ADV and multi-ring structures satisfying our inter-ring connection rules results in a more attractive survivability performance.

A new Fast Recovery Scheme for Resiliency of Attacked Resilient Packet Ring(RPR) (공격받은 IEEE802.17 Resilient Packet Ring(RPR) 망의 Resiliency를 위한 신속한 망 복원방안)

  • Lee, Young-Joo;Koo, Do-Jung
    • Convergence Security Journal
    • /
    • v.8 no.2
    • /
    • pp.57-62
    • /
    • 2008
  • In this paper, we suggest new fast recovery mechanism in RPR network, in case of node addition or removing by exterior attack. A RPR network recovery time is consist of two. Failure detecting time and reporting time are that. In this paper we propose fast recovery mechanism that can reduce each time. In a Legacy recovery mechanism, To report node's state, rpr node transmit protection messages. But interval of this protection messages increase exponentially. Thus A transmission failure of protection message cause delay of reporting of network state. Therefore we propose new node state reporting mechanism that put a node state in type b fairness message. And We also suggest fast failure detecting mechanism.

  • PDF

Dual Process Linear Protection Switching Method Supporting Node Redundancy (노드 이중화를 위한 이중 프로세스 선형 보호 절체 방법)

  • Kim, Dae-Ub;Kim, Byung Chul;Lee, Jae Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.26-37
    • /
    • 2016
  • The core technologies of the current transport network are OAM and protection switching to meet the sub-50ms protection switching time via a path redundancy when a link or node failure occurs. The transport networks owned by public network operators, central/local governments, and major enterprises are individually configured and managed with service resiliency in each own protected sub-network. When such networks are cascaded, it is also important to provide a node resiliency between two protected sub-networks. However, the linear protection switching in packet transport networks, such as MPLS-TP and Carrier Ethernet, does not define a solution of dual node interconnection. Although Ethernet ring protection switching covers the dual node interconnection scheme, a large amount of duplicated data frames may be flooded when a failure occurs on an adjacent (sub) ring. In this paper, we suggest a dual node interconnection scheme with linear protection switching technology in multiple protected sub-networks. And we investigate how various protected sub-network combinations with a proposed linear or ring protection process impact the service resiliency of multiple protected sub-networks through extensive experiments on link and interconnected node failures.

Reliable Hub Location Problems and Network Design (신뢰성에 기반한 허브 입지 모델과 네트워크 디자인)

  • Kim, Hyun
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.540-556
    • /
    • 2009
  • The hub and spoke network is a critical network-based infrastructure that is widely applied in current transportation and telecommunications systems, including Internets, air transportation networks and highway systems. This main idea of hub location models is to construct a network system which achieves the economy of scale of flows. The main purpose of this study is to introduce new hub location problems that take into account network reliability. Two standard models based on assignment schemes are proposed, and a minimum threshold model is provided as an extension in terms of hub network design. The reliability and interaction potentials of 15 nodes in the U.S. are used to examine model behaviors. According to the type of models and reliability, hubs, and minimum threshold levels, relationships among the flow economy of scale, network costs, and network resiliency are analyzed.

  • PDF

Grid-Based Key Pre-Distribution in Wireless Sensor Networks

  • Mohaisen, Abedelaziz;Nyang, Dae-Hun;Maeng, Young-Jae;Lee, Kyung-Hee;Hong, Do-Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.2
    • /
    • pp.195-208
    • /
    • 2009
  • In this paper, we introduce a grid-based key pre-distribution scheme in wireless sensor networks, which aims to improve the connectivity and resiliency while maintaining a reasonable overhead. We consider simplification of the key establishment logic and enhancement of the connectivity via plat polynomial assignment on a three-dimensional grid for node allocation and keying material assignment. We demonstrate that our scheme results in improvements via a detailed discussion on the connectivity, resource usage, security features and resiliency. A comparison with other relevant works from the literature along with a demonstrated implementation on typical sensor nodes shows the feasibility of the introduced scheme and its applicability for large networks.

Plat-Based Key Pre-Distribution Scheme in Sensor Network (센서네트워크에서 평면 그리드 기반의 키 선 분배 기법)

  • Maeng, Young-Jae;Mohaisen, Abedelaziz;Lee, Kyung-Hee;Nyang, Dae-Hun
    • The KIPS Transactions:PartC
    • /
    • v.15C no.1
    • /
    • pp.1-8
    • /
    • 2008
  • The security of wireless sensor networks is a challenging research area where the resources constraints are a bottleneck for any successful security design. Due to their computational feasibility, symmetric key algorithms that require key pre-distribution are more desirable for use in these networks. In the pre-distribution scheme, keys or keying materials are assigned to each node prior deployment to guarantee a secure communication within the entire network. Though several works are introduced on this issue, yet the connectivity and resiliency are imperfectly handled. In this paper, we revisit the grid based key pre-distribution scheme aiming to improve the connectivity, introduce a higher resiliency level, simplify the logic of key establishment and maintain same level of used of resources usage. The core of our modification relies on introducing the novel plat-based polynomial assignment and key establishment mechanism. To demonstrate the advantageous properties of our scheme over the revisited one, details of consumed resources, resulting connectivity, security and comparisons with relevant works are introduced.

Geographical Analysis on Network Reliability of Public Transportation Systems:A Case Study of Subway Network System in Seoul (대중 교통망의 네트워크 신뢰도에 관한 지리학적 분석 -서울시 지하철망을 대상으로-)

  • Kim, Hyun
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.2
    • /
    • pp.187-205
    • /
    • 2009
  • Failures on network components of a public transportation system can give rise to the severe degradation of entire system functionality. This paper aims at exploring how potential failures can affect the system flows and reliability of subway network systems in Metropolitan Seoul. To evaluate the range of impacts of disruptions, this research employs a probabilistic approach, network reliability. Network reliability measures the network resiliency and probability of flow loss under a variety of simulated disruptions of critical network components, transfer stations in subway system. By identifying the best and worst scenarios associated with geographical impact, as well as evaluating the criticality of transfer stations, this research presents some insights for protecting current subways systems.

Communication Failure Resilient Improvement of Distributed Neural Network Partitioning and Inference Accuracy (통신 실패에 강인한 분산 뉴럴 네트워크 분할 및 추론 정확도 개선 기법)

  • Jeong, Jonghun;Yang, Hoeseok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • Recently, it is increasingly necessary to run high-end neural network applications with huge computation overhead on top of resource-constrained embedded systems, such as wearable devices. While the huge computational overhead can be alleviated by distributed neural networks running on multiple separate devices, existing distributed neural network techniques suffer from a large traffic between the devices; thus are very vulnerable to communication failures. These drawbacks make the distributed neural network techniques inapplicable to wearable devices, which are connected with each other through unstable and low data rate communication medium like human body communication. Therefore, in this paper, we propose a distributed neural network partitioning technique that is resilient to communication failures. Furthermore, we show that the proposed technique also improves the inference accuracy even in case of no communication failure, thanks to the improved network partitioning. We verify through comparative experiments with a real-life neural network application that the proposed technique outperforms the existing state-of-the-art distributed neural network technique in terms of accuracy and resiliency to communication failures.