• Title/Summary/Keyword: nanoLC/ESI-MS/MS

Search Result 11, Processing Time 0.035 seconds

Intensive Proteomic Approach to Identify Secreted Peptides/Proteins from 3T3-L1 Adipocytes using Gel Electrophoresis and Liquid Chromatograph Separation Methods (젤 전기영동 및 액체 크로마토그래피 분리 방법을 이용하여 지방 세포로부터 분비되는 단백질들에 대한 프로테오믹스 연구 방법)

  • Hwang, Hyun-Ho;Baek, Moon-Chang
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.203-212
    • /
    • 2011
  • Adipocytes have been known to secrete a number of important proteins called adipokines with roles in energy metabolism, reproduction, cardiovascular function and immunity. In this study we have attempted to identify intensively secretory proteins from 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated into mature adipocytes and then the cells were left in serum-free medium. The supernatant was filtrated and dialyzed. Lyophilized secretome was fractionated by two different methods, 1-D SDS PAGE and RP-FPLC. The tryptic peptides from the gel slices and the FPLC fractions were analyzed by nanoLC/ESI-MS/MS. We identified a total of 303 identical proteins from two methods, 251 proteins from 1-D gel and 184 proteins from RP-FPLC. 86 of them were listed as a secretory protein Finally, we identified many known or unknown secreted proteins existed in the low level including adiponectin, angiotensinogen, bone morphogenetic protein-1 (BMP-1), macrophage migration inhibitory factor (MIF), insulin like growth factor-II (IGF-II), interleukin-6 (IL-6), follistatin-related protein-1, minecan, and resistin. The existence of some of secreted proteins has been confirmed in RNA level. This proteomic experiment is useful for the intensive screening of secretory proteins in many kinds of other cells.

High Accuracy Mass Measurement Approach in the Identification of Phospholipids in Lipid Extracts: 7 T Fourier-transform Mass Spectrometry and MS/MS Validation

  • Yu, Seong-Hyun;Lee, Youn-Jin;Park, Soo-Jin;Lee, Ye-Won;Cho, Kun;Kim, Young-Hwan;Oh, Han-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1170-1178
    • /
    • 2011
  • In the present study, the approach of high accuracy mass measurements for phospholipid identifications was evaluated using a 7 T ESI-FTMS/linear ion trap MS/MS. Experiments were carried out for porcine brain, bovine liver, and soybean total lipid extracts in both positive and negative ion modes. In total, 59, 55, and 18 phospholipid species were characterized in the positive ion mode for porcine brain, bovine liver, and soybean lipid extracts, respectively. Assigned lipid classes were PC, PE, PEt, PS, and SM. In the negative ion mode, PG, PS, PA, PE, and PI classes were observed. In the negative ion mode, for porcine brain, bovine liver, and soybean lipid extracts, 28, 34, and 29 species were characterized, respectively. Comparison of our results with those obtained by other groups using derivatization-LC-APCI MS and nano-RP-LC-MS/MS showed that our approach can characterize PC species as effectively as those methods could. In conclusion, we demonstrated that high accuracy mass measurements of total lipid extracts using a high resolution FTMS, particularly, 7T FTMS, plus ion-trap MS/MS are very useful in profiling lipid compositions in biological samples.

Simple Purification of the Human Antimicrobial Peptide Dermcidin (MDCD-1L) by Intein-Mediated Expression in E. coli

  • Hong, In-Pyo;Kim, Yong-Seok;Choi, Shin-Geon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.350-355
    • /
    • 2010
  • Among human antimicrobial peptides (hAMPs), DCD-1L has a broad spectrum of antimicrobial activity over a wide pH range and in high salt concentrations. It offers a promising alternative to conventional antibiotics. The 458-bp-long dermcidin cDNA was amplified by PCR using a human fetal cDNA library as a template. The 147-bp fragment of the MDCD-1L gene encoding an additional methionine residue was subcloned into the pTYB11 vector. Recombinant MDCD-1L was expressed as an intein fusion protein in E. coli, and then purified by affinity chromatography using chitin beads. A small peptide with a molecular mass of about 5 kDa was detected by tricine gel electrophoresis. The recombinant MDCD-1L peptide was purified from the gel and its amino acid sequence was determined by nanoLC-ESI-MS/MS analysis. The initiating amino acid, methionine, remained attached to the N-terminal region of recombinant MDCD-1L. Purified MDCD-1L showed antimicrobial activity against a Micrococcus luteus test strain.

Proteomic Analysis of Serum of Women with Elevated Ca-125 to Differentiate Malignant from Benign Ovarian Tumors

  • Li, Li;Xu, Yi;Yu, Chun-Xia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3265-3270
    • /
    • 2012
  • Clinically, elevated cancer antigen 125 (CA-125) in blood predicts tumor burden in a woman's body, especially in the ovary, but cannot differentiate between malignant or benign. We here used intensive modern proteomic approaches to identify predictive proteins in the serum of women with elevated CA-125 to differentiate malignant from benign ovarian tumors. We identified differentially expressed proteins in serum samples of ovarian cancer (OC) patients, benign ovarian tumor (BT) patients, and healthy control women using mass spectrometry-based quantitative proteomics. Both the OC and BT patients had elevated CA-125. Quantitation was achieved using isobaric tags for relative and absolute quantitation. We obtained 124 quantified differential serum proteins in OC compared with BT. Two proteins, apolipoprotein A-4 (APOA4) and natural resistance-associated macrophage 1, were verified using Western blotting. Proteome profiling applied to OC cases identified several differential serum proteins in the serum of women with elevated CA-125. A novel protein, APOA4, has the potential to be a marker for malignant tumor differentiation in the serum of women with elevated CA-125.

Development of Ultra-High Pressure Capillary Reverse-Phase Liquid Chromatography/Tandem Mass Spectrometry for High-Sensitive and High-Throughput Proteomics

  • Kim, Min-Sik;Choie, Woo-Suk;Shin, Yong-Seung;Yu, Myeong-Hee;Lee, Sang-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1833-1839
    • /
    • 2004
  • Recently mass spectrometry and separation methods such as liquid chromatography have become major tools in the field of proteomics. In this report, we describe in detail our efforts to develop ultra-high pressure capillary reverse-phase liquid chromatography (cRPLC) and its online coupling to a mass spectrometer by a nanoelectrospray (nanoESI) interface. The RPLC system is constructed in house to deliver LC solvents at the pressure up to 20,000 psig, which is four times higher than conventional RPLC systems. The high operation pressure allows the efficient use of packed micro-capillary columns (50, 75 and 150 ${\mu}$m i.d., up to 1.5 m long). We will discuss the effect of column diameter on the sensitivity of cRPLC/MS/MS experiments and the utility of the developed technique for proteome analysis by its application in the analysis of proteome samples having different levels of complexity.

Genistein alleviates pulmonary fibrosis by inactivating lung fibroblasts

  • Seung-hyun Kwon;Hyunju Chung;Jung-Woo Seo;Hak Su Kim
    • BMB Reports
    • /
    • v.57 no.3
    • /
    • pp.143-148
    • /
    • 2024
  • Pulmonary fibrosis is a serious lung disease that occurs predominantly in men. Genistein is an important natural soybean-derived phytoestrogen that affects various biological functions, such as cell migration and fibrosis. However, the antifibrotic effects of genistein on pulmonary fibrosis are largely unknown. The antifibrotic effects of genistein were evaluated using in vitro and in vivo models of lung fibrosis. Proteomic data were analyzed using nano-LC-ESI-MS/MS. Genistein significantly reduced transforming growth factor (TGF)-β1-induced expression of collagen type I and α-smooth muscle actin (SMA) in MRC-5 cells and primary fibroblasts from patients with idiopathic pulmonary fibrosis (IPF). Genistein also reduced TGF-β1-induced expression of p-Smad2/3 and p-p38 MAPK in fibroblast models. Comprehensive protein analysis confirmed that genistein exerted an anti-fibrotic effect by regulating various molecular mechanisms, such as unfolded protein response, epithelial mesenchymal transition (EMT), mammalian target of rapamycin complex 1 (mTORC1) signaling, cell death, and several metabolic pathways. Genistein was also found to decrease hydroxyproline levels in the lungs of BLM-treated mice. Genistein exerted an anti-fibrotic effect by preventing fibroblast activation, suggesting that genistein could be developed as a pharmacological agent for the prevention and treatment of pulmonary fibrosis.

Genetically Engineered Biosynthesis of Macrolide Derivatives Including 4-Amino-4,6-Dideoxy-L-Glucose from Streptomyces venezuelae YJ003-OTBP3

  • Pageni, Binod Babu;Oh, Tae-Jin;Liou, Kwang-Kyoung;Yoon, Yeo-Joon;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.88-94
    • /
    • 2008
  • Two sugar biosynthetic cassette plasm ids were used to direct the biosynthesis of a deoxyaminosugar. The pOTBP1 plasmid containing TDP-glucose synthase (desIII), TDP-glucose-4,6-dehydratase (desIV), and glycosyltransferase (desVII/desVIII) was constructed and transformed into S. venezuelae YJ003, a strain in which the entire gene cluster of desosamine biosynthesis is deleted. The expression plasmid pOTBP3 containing 4-aminotransferase (gerB) and 3,5-epimerase (orf9) was transformed again into S. venezuelae YJ003-OTBP1 to obtain S. venezuelae YJ003-OTBP3 for the production of 4-amino-4,6-dideoxy-L-glucose derivatives. The crude extracts obtained from S. venezuelae ATCC 15439, S. venezuelae YJ003, and S. venezuelae YJ003-OTBP3 were further analyzed by TLC, bioassay, HPLC, ESI/MS, LC/MS, and MS/MS. The results of our study clearly shows that S. venezuelae YJ003-OTBP3 constructs other new hybrid macrolide derivatives including 4-amino-4,6-dideoxy-L-glycosylated YC-17 (3, [M+ $Na^+$] m/z=464.5), methymycin (4, m/z=480.5), novamethymycin (6, m/z=496.5), and pikromycin (5, m/z=536.5) from a 12-membered ring aglycon (10-deoxymethynolide, 1) and a 14-membered ring aglycon (narbonolide, 2). These results suggest a successful engineering of a deoxysugar pathway to generate novel hybrid macrolide derivatives, including deoxyaminosugar.

Search for Novel Stress-responsive Protein Components Using a Yeast Mutant Lacking Two Cytosolic Hsp70 Genes, SSA1 and SSA2

  • Matsumoto, Rena;Rakwal, Randeep;Agrawal, Ganesh Kumar;Jung, Young-Ho;Jwa, Nam-Soo;Yonekura, Masami;Iwahashi, Hitoshi;Akama, Kuniko
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.381-388
    • /
    • 2006
  • Heat shock proteins (Hsp) 70 are a ubiquitous family of molecular chaperones involved in many cellular processes. A yeast strain, ssa1/2, with two functionally redundant cytosolic Hsp70s (SSA1 and SSA2) deleted shows thermotolerance comparable to mildly heatshocked wild type yeast, as well as increased protein synthesis and ubiquitin-proteasome protein degradation. Since mRNA abundance does not always correlate well with protein expression levels it is essential to study proteins directly. We used a gel-based approach to identify stress-responsive proteins in the ssa1/2 mutant and identified 43 differentially expressed spots. These were trypsin-digested and analyzed by nano electrospray ionization liquid chromatography tandem mass spectrometry (nESI-LC-MS/MS). A total of 22 non-redundant proteins were identified, 11 of which were confirmed by N-terminal sequencing. Nine proteins, most of which were up-regulated (2-fold or more) in the ssa1/2 mutant, proved to be stress-inducible proteins such as molecular chaperones and anti-oxidant proteins, or proteins related to carbohydrate metabolism. Interestingly, a translational factor Hyp2p up-regulated in the mutant was also found to be highly phosphorylated. These results indicate that the cytosolic Hsp70s, Ssa1p and Ssa2p, regulate an abundance of proteins mainly involved in stress responses and protein synthesis.

Proteomic analysis for the effects of non-saponin fraction with rich polysaccharide from Korean Red Ginseng on Alzheimer's disease in a mouse model

  • Sujin Kim;Yunkwon Nam;Min-jeong Kim;Seung-hyun Kwon;Junhyeok Jeon;Soo Jung Shin;Soyoon Park;Sungjae Chang;Hyun Uk Kim;Yong Yook Lee;Hak Su Kim;Minho Moon
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.302-310
    • /
    • 2023
  • Background: The most common type of dementia, Alzheimer's disease (AD), is marked by the formation of extracellular amyloid beta (Aβ) plaques. The impairments of axons and synapses appear in the process of Aβ plaques formation, and this damage could cause neurodegeneration. We previously reported that non-saponin fraction with rich polysaccharide (NFP) from Korean Red Ginseng (KRG) showed neuroprotective effects in AD. However, precise molecular mechanism of the therapeutic effects of NFP from KRG in AD still remains elusive. Methods: To investigate the therapeutic mechanisms of NFP from KRG on AD, we conducted proteomic analysis for frontal cortex from vehicle-treated wild-type, vehicle-treated 5XFAD mice, and NFP-treated 5XFAD mice by using nano-LC-ESI-MS/MS. Metabolic network analysis was additionally performed as the effects of NFP appeared to be associated with metabolism according to the proteome analysis. Results: Starting from 5,470 proteins, 2,636 proteins were selected for hierarchical clustering analysis, and finally 111 proteins were further selected for protein-protein interaction network analysis. A series of these analyses revealed that proteins associated with synapse and mitochondria might be linked to the therapeutic mechanism of NFP. Subsequent metabolic network analysis via genome-scale metabolic models that represent the three mouse groups showed that there were significant changes in metabolic fluxes of mitochondrial carnitine shuttle pathway and mitochondrial beta-oxidation of polyunsaturated fatty acids. Conclusion: Our results suggested that the therapeutic effects of NFP on AD were associated with synaptic- and mitochondrial-related pathways, and they provided targets for further rigorous studies on precise understanding of the molecular mechanism of NFP.