DOI QR코드

DOI QR Code

High Accuracy Mass Measurement Approach in the Identification of Phospholipids in Lipid Extracts: 7 T Fourier-transform Mass Spectrometry and MS/MS Validation

  • Yu, Seong-Hyun (Department of Chemsitry and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Lee, Youn-Jin (Department of Chemsitry and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Park, Soo-Jin (Department of Chemsitry and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Lee, Ye-Won (Department of Chemsitry and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Cho, Kun (Department of Chemsitry and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Kim, Young-Hwan (Mass Spectrometry Research Center, Korea Basic Science Institute) ;
  • Oh, Han-Bin (Department of Chemsitry and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • Received : 2010.09.29
  • Accepted : 2011.02.01
  • Published : 2011.04.20

Abstract

In the present study, the approach of high accuracy mass measurements for phospholipid identifications was evaluated using a 7 T ESI-FTMS/linear ion trap MS/MS. Experiments were carried out for porcine brain, bovine liver, and soybean total lipid extracts in both positive and negative ion modes. In total, 59, 55, and 18 phospholipid species were characterized in the positive ion mode for porcine brain, bovine liver, and soybean lipid extracts, respectively. Assigned lipid classes were PC, PE, PEt, PS, and SM. In the negative ion mode, PG, PS, PA, PE, and PI classes were observed. In the negative ion mode, for porcine brain, bovine liver, and soybean lipid extracts, 28, 34, and 29 species were characterized, respectively. Comparison of our results with those obtained by other groups using derivatization-LC-APCI MS and nano-RP-LC-MS/MS showed that our approach can characterize PC species as effectively as those methods could. In conclusion, we demonstrated that high accuracy mass measurements of total lipid extracts using a high resolution FTMS, particularly, 7T FTMS, plus ion-trap MS/MS are very useful in profiling lipid compositions in biological samples.

Keywords

References

  1. Nair, S. S.; Nilsson, C. L.; Emmett, M. R.; Schaub, T. M.; Gowd, K. H.; Thakur, S. S.; Krishnan, K. S.; Balaram, P.; Marshall, A. G. Anal. Chem. 2006, 78, 8082. https://doi.org/10.1021/ac0607764
  2. Zimmer, J. S. D.; Monroe, M. E.; Qian, W. J.; Smith, R. D. Mass Spectrom. Rev. 2006, 25, 450. https://doi.org/10.1002/mas.20071
  3. Han, X. M.; Jin, M.; Breuker, K.; McLafferty, F. W. Science 2006, 314, 109. https://doi.org/10.1126/science.1128868
  4. Jones, J. J.; Stump, M. J.; Fleming, R. C.; Lay, J. O.; Wilkins, C. L. J. Am. Soc. Mass Spectrom. 2004, 15, 1665. https://doi.org/10.1016/j.jasms.2004.08.007
  5. Christie, W. W. Advances in Lipid Methodology 1997; Oily Press: Dundee, Scotland.
  6. Han, X.; Gross, R. W. Mass Spectrom. Rev. 2005, 24, 367 https://doi.org/10.1002/mas.20023
  7. Kim, H-Y.; Wang, T. C. L.; Ma, Y-C. Anal. Chem. 1994, 66, 3977. https://doi.org/10.1021/ac00094a020
  8. Pulfer, M.; Murphy, R. C. Mass Spectrom. Rev. 2003, 22, 332. https://doi.org/10.1002/mas.10061
  9. Ivanova, P. T.; Cerda, B. A.; Horn, D. M.; Cohen, J. S.; McLafferty, F. W.; Brown, H. A. Proc. Natl. Acad. Sci. USA 2001, 98, 7152. https://doi.org/10.1073/pnas.131195098
  10. Ishida, M.; Yamazaki, T.; Houjou, T.; Imagawa, M.; Harada, A.; Inoue, K.; Taguchi, R. Rapid Commun. Mass Spectrom. 2004, 18, 2486. https://doi.org/10.1002/rcm.1650
  11. Leavell, M. D.; Leary, J. A. Anal. Chem. 2006, 78, 5497. https://doi.org/10.1021/ac0604179
  12. Jain, M.; Petzold, C. J.; Schelle, M. W.; Leavell, M. D.; Mougous, J. D.; Bertozzi, C. R.; Leary, J. A.; Cox, J. S. Proc. Natl. Acad. Sci. USA 2007, 104, 5133. https://doi.org/10.1073/pnas.0610634104
  13. Lemo, L. A. J.; German, J. B.; Lebrilla, C. B. Anal. Chem. 2010, 82, 4236. https://doi.org/10.1021/ac100556g
  14. He, H.; Emmett, M. R.; Nilsson, C. L.; Conrad, C. A.; Marshall, A. G. Int. J. Mass Spectrom. 2011, in press.
  15. Marto, J. A.; White, F. M.; Seldomridge, S.; Marshall, A. G. Anal. Chem. 1995, 67, 3979. https://doi.org/10.1021/ac00117a025
  16. Jones, J. J.; Stump, M. J.; Fleming, R. C.; Lay, J. O.; Wilkins, C. L. Anal. Chem. 2003, 75, 1340. https://doi.org/10.1021/ac026213j
  17. Jones, J. J.; Borgmann, S.; Wilkins, C. L.; O’Bien, R. M. Anal. Chem. 2006, 78, 3062. https://doi.org/10.1021/ac0600858
  18. Taguchi, R.; Hayakawa, J.; Takeuchi, Y.; Ishida, M. J. Mass Spectrom. 2000, 35, 953. https://doi.org/10.1002/1096-9888(200008)35:8<953::AID-JMS23>3.0.CO;2-4
  19. Houjou, T.; Yamatani, K.; Imaawa, M.; Shimizu, T.; Taguchi, R. Rapid Commun. Mass Spectrom. 2005, 19, 654. https://doi.org/10.1002/rcm.1836
  20. Ekroos, K.; Chernushevich, I. V.; Simons, K.; Shevchenko, A. Anal. Chem. 2002, 74, 941. https://doi.org/10.1021/ac015655c
  21. Hsu, F.; Turk, J. J. Mass Spectrom. 2003, 14, 352. https://doi.org/10.1016/S1044-0305(03)00064-3
  22. Dobson, G.; Deighton, N. Chem. Phys. Lipids 2001, 111, 1. https://doi.org/10.1016/S0009-3084(01)00130-X
  23. Bang, D. Y.; Kang, D.; Moon, M. H. J. Chromatogr. A 2006, 1104, 222. https://doi.org/10.1016/j.chroma.2005.12.005

Cited by

  1. Exploration of natural phosphatidylcholine sources from six beans by UHPLC‐Q‐HRMS vol.85, pp.10, 2020, https://doi.org/10.1111/1750-3841.15393