DOI QR코드

DOI QR Code

Development of Ultra-High Pressure Capillary Reverse-Phase Liquid Chromatography/Tandem Mass Spectrometry for High-Sensitive and High-Throughput Proteomics

  • Kim, Min-Sik (Department of Chemistry and Center for Electro- & Photo-Responsive Molecules, Korea University) ;
  • Choie, Woo-Suk (Department of Chemistry and Center for Electro- & Photo-Responsive Molecules, Korea University) ;
  • Shin, Yong-Seung (Functional Proteomics Center, Korea Institute of Science and Technology, School of Life Sciences, Korea University) ;
  • Yu, Myeong-Hee (Functional Proteomics Center, Korea Institute of Science and Technology) ;
  • Lee, Sang-Won (Department of Chemistry and Center for Electro- & Photo-Responsive Molecules, Korea University)
  • Published : 2004.12.20

Abstract

Recently mass spectrometry and separation methods such as liquid chromatography have become major tools in the field of proteomics. In this report, we describe in detail our efforts to develop ultra-high pressure capillary reverse-phase liquid chromatography (cRPLC) and its online coupling to a mass spectrometer by a nanoelectrospray (nanoESI) interface. The RPLC system is constructed in house to deliver LC solvents at the pressure up to 20,000 psig, which is four times higher than conventional RPLC systems. The high operation pressure allows the efficient use of packed micro-capillary columns (50, 75 and 150 ${\mu}$m i.d., up to 1.5 m long). We will discuss the effect of column diameter on the sensitivity of cRPLC/MS/MS experiments and the utility of the developed technique for proteome analysis by its application in the analysis of proteome samples having different levels of complexity.

Keywords

References

  1. Velculescu, V. E.; Zhang, L.; Zhou, W.; Vogelstein, J.; Basrai, M.A.; Bassett, D. E.; Hieter, P.; Vogelstein, B.; Kinzler, K. W. Cell1997, 88, 243-251. https://doi.org/10.1016/S0092-8674(00)81845-0
  2. DeRisi, J. L.; Iyer, V. R.; Brown, P. O. Science 1997, 278, 680-686. https://doi.org/10.1126/science.278.5338.680
  3. Gygi, S. P.; Rochon, Y.; Franza, B. R.; Aebersold, R. Mol. Cell.Biology 1999, 19, 1720-1730.
  4. Anderson, N. L.; Anderson, N. G. Mol. Cell. Proteomics 2002, 1,845-867. https://doi.org/10.1074/mcp.R200007-MCP200
  5. O'Donovan, C.; Apweiler, R.; Bairoch, A. Trends Biotechnol.2001, 19, 178-181. https://doi.org/10.1016/S0167-7799(01)01598-0
  6. Wolters, D. A.; Washburn, M. P.; Yates, J. R. Anal. Chem. 2001,73, 5683-5690. https://doi.org/10.1021/ac010617e
  7. Shen, Y.; Toliæ, N.; Zhao, R.; Paša-Toliæ, L.; Li, L.; Berger, S. J.;Harkewicz, R.; Anderson, G. A.; Belov, M. E.; Smith, R. D. Anal.Chem. 2001, 73, 3011-3021. https://doi.org/10.1021/ac001393n
  8. Link, A. J.; Eng, J.; Schieltz, D. M.; Carmack, E.; Mize, G. J.; Morris, D. R.; Garvik, B. M.; Yates, J. R. Nat. Biotechnol. 1999,17, 676-682. https://doi.org/10.1038/10890
  9. Peng, J.; Elias, J. E.; Thoreen, C. C.; Licklider, L. J.; Gygi, S. P. J.Proteome Res. 2003, 2, 43-50 https://doi.org/10.1021/pr025556v
  10. Shen, Y.; Smith, R. D. Electrophoresis 2002, 23, 3106-3124. https://doi.org/10.1002/1522-2683(200209)23:18<3106::AID-ELPS3106>3.0.CO;2-Y
  11. Shen, Y.; Zhao, R.; Berger, S. J.; Anderson, G. A.; Rodriguez, N.;Smith, R. D. Anal. Chem. 2002, 74, 4235-4249. https://doi.org/10.1021/ac0202280
  12. Banks, J. F. Chromatogr. 1996, 743, 99-104. https://doi.org/10.1016/0021-9673(96)00319-6
  13. Russell, W. K.; Park, Z-. Y.; Russell, D. H. Anal. Chem. 2001, 73,2682-2685. https://doi.org/10.1021/ac001332p
  14. Tabb, D. L.; McDonald, W. H.; Yates, J. R. J. Proteome Res. 2002,1, 21-26. https://doi.org/10.1021/pr015504q
  15. Washburn, M. P.; Wolters, D.; Yates, J. R. Nat. Biotechnol. 2001,19, 242-247. https://doi.org/10.1038/85686

Cited by

  1. Postexperiment Monoisotopic Mass Filtering and Refinement (PE-MMR) of Tandem Mass Spectrometric Data Increases Accuracy of Peptide Identification in LC/MS/MS vol.7, pp.6, 2008, https://doi.org/10.1074/mcp.M700419-MCP200
  2. Capillary Liquid Chromatography at Ultrahigh Pressures vol.3, pp.1, 2010, https://doi.org/10.1146/annurev.anchem.1.031207.113014
  3. The effect and potential of using a temperature controlled separation column with ultra-high pressure microcapillary liquid chromatography/tandem mass spectrometry on proteomic analysis vol.136, pp.10, 2011, https://doi.org/10.1039/c0an00724b
  4. Ultrahigh-pressure dual online solid phase extraction/capillary reverse-phase liquid chromatography/tandem mass spectrometry (DO-SPE/cRPLC/MS/MS): A versatile separation platform for high-throughput and highly sensitive proteomic analyses vol.28, pp.6, 2007, https://doi.org/10.1002/elps.200600501
  5. A mitochondrial DNA variant at position 16189 is associated with type 2 diabetes mellitus in Asians vol.51, pp.4, 2008, https://doi.org/10.1007/s00125-008-0933-z
  6. Current literature in mass spectrometry vol.40, pp.11, 2004, https://doi.org/10.1002/jms.812
  7. A Comprehensive Identification of Synaptic Vesicle Proteins in Rat Brains by cRPLC/MS-MS and 2DE/MALDI-TOF-MS vol.28, pp.9, 2004, https://doi.org/10.5012/bkcs.2007.28.9.1499