DOI QR코드

DOI QR Code

Simple Purification of the Human Antimicrobial Peptide Dermcidin (MDCD-1L) by Intein-Mediated Expression in E. coli

  • Hong, In-Pyo (Department of Bioengineering and Technology, Kangwon National University) ;
  • Kim, Yong-Seok (Department of Biochemistry, College of Medicine, Hanyang University) ;
  • Choi, Shin-Geon (Department of Bioengineering and Technology, Kangwon National University)
  • Published : 2010.02.28

Abstract

Among human antimicrobial peptides (hAMPs), DCD-1L has a broad spectrum of antimicrobial activity over a wide pH range and in high salt concentrations. It offers a promising alternative to conventional antibiotics. The 458-bp-long dermcidin cDNA was amplified by PCR using a human fetal cDNA library as a template. The 147-bp fragment of the MDCD-1L gene encoding an additional methionine residue was subcloned into the pTYB11 vector. Recombinant MDCD-1L was expressed as an intein fusion protein in E. coli, and then purified by affinity chromatography using chitin beads. A small peptide with a molecular mass of about 5 kDa was detected by tricine gel electrophoresis. The recombinant MDCD-1L peptide was purified from the gel and its amino acid sequence was determined by nanoLC-ESI-MS/MS analysis. The initiating amino acid, methionine, remained attached to the N-terminal region of recombinant MDCD-1L. Purified MDCD-1L showed antimicrobial activity against a Micrococcus luteus test strain.

Keywords

References

  1. Baechle, D., T. Flad, A. Cansier, H. Steffen, B. Schittek, J. Tolson, et al. 2006. Cathepsin D is present in human eccrine sweat and involved in the postsecretory processing of the antimicrobial peptide DCD-1L. J. Biol. Chem. 281: 5406-5415.
  2. Bisht, G. S., D. S. Rawat, A. Kumar, R. Kumar, and S. Pasha. 2007. Antimicrobial activity of rationally designed amino terminal modified peptides. Bioorg. Med. Chem. Lett. 17: 4343-4346. https://doi.org/10.1016/j.bmcl.2007.05.015
  3. Chen, Y. Q., S. Q. Zhang, B. C. Li, W. Qiu, B. Jiao, J. Zhang, and Z. Y. Diao. 2008. Expression of a cytotoxic cationic antibacterial peptide in Escherichia coli using two fusion partners. Protein Expr. Purif. 57: 303-311. https://doi.org/10.1016/j.pep.2007.09.012
  4. Cipakova, I., J. Gasperik, and E. Hostinova. 2006. Expression and purification of human antimicrobial peptide, dermcidin, in Escherichia coli. Protein Expr. Purif. 45: 269-274. https://doi.org/10.1016/j.pep.2005.07.002
  5. Diao, H., C. Guo, D. Lin, and Y. Zhang. 2007. Intein-mediated expression is an effective approach in the study of betadefensins. Biochem. Biophys. Res. Commun. 357: 840-846. https://doi.org/10.1016/j.bbrc.2007.03.149
  6. Flad, T., R. Bogumil, J. Tolson, B. Schittek, C. Garbe, M. Deeg, C. A. Mueller, and H. Kalbacher. 2002. Detection of dermcidinderived peptides in sweat by ProteinChip technology. J. Immunol. Methods 270: 53-62. https://doi.org/10.1016/S0022-1759(02)00229-6
  7. Hong, I. P., Y. S. Kim, and S. G. Choi. 2007. Recombinant expression of human cathelicidin (hCAP18/Ll37) in Pichia pastoris. Biotechnol. Lett. 29: 73-78.
  8. Huang, L., J. Wang, Z. Zhong, L. Peng, H. Chen, Z. Xu, and P. Chen. 2006. Production of bioactive human beta-defensin-3 in Escherichia coli by soluble fusion expression. Biotechnol. Lett. 28: 627-632. https://doi.org/10.1007/s10529-006-0024-5
  9. Ingham, A. B. and R. J. Moore. 2007. Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol. Appl. Biochem. 47: 1-9. https://doi.org/10.1042/BA20060207
  10. Lai, Y. P., Y. F. Peng, Y. Zuo, J. Li, J. Huang, L. F. Wang, and Z. R. Wu. 2005. Functional and structural characterization of recombinant dermcidin-1L, a human antimicrobial peptide. Biochem. Biophys. Res. Commun. 328: 243-250. https://doi.org/10.1016/j.bbrc.2004.12.143
  11. Morassutti, C., F. De Amicis, A. Bandiera, and S. Marchetti. 2005. Expression of SMAP-29 cathelicidin-like peptide in bacterial cells by intein-mediated system. Protein Expr. Purif. 39: 160-168. https://doi.org/10.1016/j.pep.2004.11.006
  12. Reddy, K. V., R. D. Yedery, and C. Aranha. 2004. Antimicrobial peptides: Premises and promises. Int. J. Antimicrob. Agents 24: 536-547. https://doi.org/10.1016/j.ijantimicag.2004.09.005
  13. Rieg, S., C. Garbe, B. Sauer, H. Kalbacher, and B. Schittek. 2004. Dermcidin is constitutively produced by eccrine sweat glands and is not induced in epidermal cells under inflammatory skin conditions. Br. J. Dermatol. 151: 534-539. https://doi.org/10.1111/j.1365-2133.2004.06081.x
  14. Sambrook, J. and D. W. Russell. 2000. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
  15. Schittek, B., R. Hipfel, B. Sauer, J. Bauer, H. Kalbacher, S. Stevanovic, et al. 2001. Dermcidin: A novel human antibiotic peptide secreted by sweat glands. Nat. Immunol. 2: 1133-1137. https://doi.org/10.1038/ni732
  16. Schroder, J. M. and J. Harder. 2006. Antimicrobial skin peptides and proteins. Cell Mol. Life Sci. 63: 469-486. https://doi.org/10.1007/s00018-005-5364-0
  17. Senyurek, I., M. Paulmann, T. Sinnberg, H. Kalbacher, M. Deeg, T. Gutsmann, et al. 2009. Dermcidin-derived peptides show a different mode of action than the cathelicidin LL-37 against Staphylococcus aureus. Antimicrob. Agents Chemother. 53: 2499-2509. https://doi.org/10.1128/AAC.01679-08
  18. Sitaram, N. and R. Nagaraj. 1999. Interaction of antimicrobial peptides with biological and model membranes: Structural and charge requirements for activity. Biochim. Biophys. Acta 1462: 29-54. https://doi.org/10.1016/S0005-2736(99)00199-6
  19. Steffen, H., S. Rieg, I. Wiedemann, H. Kalbacher, M. Deeg, H. G. Sahl, et al. 2006. Naturally processed dermcidin-derived peptides do not permeabilize bacterial membranes and kill microorganisms irrespective of their charge. Antimicrob. Agents Chemother. 50: 2608-2620. https://doi.org/10.1128/AAC.00181-06
  20. Xu, M.-Q. and T. C. Evans Jr. 2005. Recent advances in protein splicing: Manipulating proteins in vitro and in vivo. Curr. Opin. Biotech. 16: 440-446. https://doi.org/10.1016/j.copbio.2005.06.012

Cited by

  1. Self-cleaving fusion tags for recombinant protein production vol.33, pp.5, 2010, https://doi.org/10.1007/s10529-011-0533-8
  2. Recombinant production of cathelicidin-derived antimicrobial peptides in Escherichia coli using an inducible autocleaving enzyme tag vol.29, pp.3, 2012, https://doi.org/10.1016/j.nbt.2011.11.001
  3. The Multiple Facets of Dermcidin in Cell Survival and Host Defense vol.4, pp.4, 2010, https://doi.org/10.1159/000336844