Search for Novel Stress-responsive Protein Components Using a Yeast Mutant Lacking Two Cytosolic Hsp70 Genes, SSA1 and SSA2

  • Matsumoto, Rena (Graduate School of Science and Technology, Chiba University) ;
  • Rakwal, Randeep (Human Stress Signal Research Center (HSS), AIST) ;
  • Agrawal, Ganesh Kumar (Research Laboratory for Agricultural Biotechnology and Biochemistry (RLABB)) ;
  • Jung, Young-Ho (Department of Molecular Biology, College of Natural Science, Sejong University) ;
  • Jwa, Nam-Soo (Department of Molecular Biology, College of Natural Science, Sejong University) ;
  • Yonekura, Masami (Food Function Laboratory, School of Agriculture, Ibaraki University) ;
  • Iwahashi, Hitoshi (Human Stress Signal Research Center (HSS), AIST) ;
  • Akama, Kuniko (Graduate School of Science and Technology, Chiba University)
  • Received : 2006.02.03
  • Accepted : 2006.03.28
  • Published : 2006.06.30

Abstract

Heat shock proteins (Hsp) 70 are a ubiquitous family of molecular chaperones involved in many cellular processes. A yeast strain, ssa1/2, with two functionally redundant cytosolic Hsp70s (SSA1 and SSA2) deleted shows thermotolerance comparable to mildly heatshocked wild type yeast, as well as increased protein synthesis and ubiquitin-proteasome protein degradation. Since mRNA abundance does not always correlate well with protein expression levels it is essential to study proteins directly. We used a gel-based approach to identify stress-responsive proteins in the ssa1/2 mutant and identified 43 differentially expressed spots. These were trypsin-digested and analyzed by nano electrospray ionization liquid chromatography tandem mass spectrometry (nESI-LC-MS/MS). A total of 22 non-redundant proteins were identified, 11 of which were confirmed by N-terminal sequencing. Nine proteins, most of which were up-regulated (2-fold or more) in the ssa1/2 mutant, proved to be stress-inducible proteins such as molecular chaperones and anti-oxidant proteins, or proteins related to carbohydrate metabolism. Interestingly, a translational factor Hyp2p up-regulated in the mutant was also found to be highly phosphorylated. These results indicate that the cytosolic Hsp70s, Ssa1p and Ssa2p, regulate an abundance of proteins mainly involved in stress responses and protein synthesis.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Agrawal, G. K. and Rakwal, R. (2006) Rice proteomics: a cornerstone for cereal food crop proteomes. Mass Spectrom Rev. 25, 1−53 https://doi.org/10.1002/mas.20056
  2. Agrawal, G. K. and Thelen, J. J. (2005) Development of a simplified, economical polyacrylamide gel staining protocol for phosphoproteins. Proteomics 5, 4684−4688 https://doi.org/10.1002/pmic.200500021
  3. Agrawal, G. K., Rakwal, R., Yonekura, M., Kubo, A., and Saji, H. (2002) Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics 2, 947-959 https://doi.org/10.1002/1615-9861(200208)2:8<947::AID-PROT947>3.0.CO;2-J
  4. Becker, J., Walter, W., Yan, W., and Craig, E. A. (1996) Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo. Mol. Cell. Biol. 16, 4378−4386
  5. Benne, R., Brown-Luedi, M. L., and Hershey, J. W. (1978) Purification and characterization of protein synthesis initiation factors eIF-1, eIF-4C, eIF-4D, and eIF-5 from rabbit reticulocytes. J. Biol. Chem. 253, 3070−3077
  6. Bermingham-McDonogh, O., Gralla, E. B., and Valentine, J. S. (1988) The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: cloning, sequencing, and biological activity. Proc. Natl. Acad. Sci. USA 85, 4789−4793 https://doi.org/10.1073/pnas.85.13.4789
  7. Beyer, A., Hollunder, J., Nasheuer, H. P., and Wilhelm, T. (2004) Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol. Cell. Proteomics 3, 1083−1092 https://doi.org/10.1074/mcp.M400099-MCP200
  8. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248−254 https://doi.org/10.1016/0003-2697(76)90527-3
  9. Brown, C. R., McCann, J. A., and Chiang, H. L. (2000) The heat shock protein Ssa2p is required for import of fructose-1, 6- bisphosphatase into Vid vesicles. J. Cell Biol. 150, 65−76 https://doi.org/10.1083/jcb.150.1.65
  10. Bush, G. L. and Meyer, D. I. (1996) The refolding activity of the yeast heat shock proteins Ssa1 and Ssa2 defines their role in protein translocation. J. Cell Biol. 135, 1229-1237 https://doi.org/10.1083/jcb.135.5.1229
  11. Cashikar, A. G., Duennwald, M., and Lindquist, S. L. (2005) A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J. Biol. Chem. 280, 23869−23875 https://doi.org/10.1074/jbc.M502854200
  12. Celis, J. E. and Gromov, P. (1999) 2D protein electrophoresis: can it be perfected- Curr. Opin. Biotechnol. 10, 16−21. Craig, E. A. (1985) The heat shock response. CRC Crit. Rev. Biochem. 18, 239-280 https://doi.org/10.3109/10409238509085135
  13. Craig, E. A. (1985) The heat shock response. CRC Crit. Rev. Biochem. 18, 239-280 https://doi.org/10.3109/10409238509085135
  14. Craig, E. A. and Jacobsen, K. (1984) Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell 38, 841-849 https://doi.org/10.1016/0092-8674(84)90279-4
  15. Futcher, B., Latter, G. I., Monardo, P., McLaughlin, C. S., and Garrels, J. I. (1999) A sampling of the yeast proteome. Mol. Cell. Biol. 19, 7357-7368
  16. Geymonat, M., Wang, L., Garreau, H., and Jacquet, M. (1998) Ssa1p chaperone interacts with the guanine nucleotide exchange factor of ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae. Mol. Microbiol. 30, 855-864 https://doi.org/10.1046/j.1365-2958.1998.01118.x
  17. Glover, J. R. and Lindquist, S. (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73−82
  18. Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720-1730
  19. Hajduch, M., Ganapathy, A., Stein, J. W., and Thelen, J. J. (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol. 137, 1397−1419 https://doi.org/10.1104/pp.104.056614
  20. Halladay, J. T. and Craig, E. A. (1995) A heat shock transcription factor with reduced activity suppresses a yeast HSP70 mutant. Mol. Cell. Biol. 15, 4890-4897
  21. Haslbeck, M., Miess, A., Stromer, T., Walter, S., and Buchner, J. (2005) Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J. Biol. Chem. 280, 23861−23868 https://doi.org/10.1074/jbc.M502697200
  22. Herbert, B. R., Harry, J. L., Packer, N. H., Gooley, A. A., Pedersen, S. K., et al. (2001) What place for polyacrylamide in proteomics- Trends Biotechnol. 19, S3−9
  23. Kang, H. A. and Hershey, J. W. (1994) Effect of initiation factor eIF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae. J. Biol. Chem. 269, 3934−3940
  24. Kang, H. A., Schwelberger, H. G., and Hershey, J. W. (1992) The two genes encoding protein synthesis initiation factor eIF-5A in Saccharomyces cerevisiae are members of a duplicated gene cluster. Mol. Gen. Genet. 233, 487−490
  25. Kang, H. A., Schwelberger, H. G., and Hershey, J. W. (1993) Translation initiation factor eIF-5A, the hypusine-containing protein, is phosphorylated on serine in Saccharomyces cerevisiae. J. Biol. Chem. 268, 14750−14756
  26. Kemper, W. M., Berry, K. W., and Merrick, W. C. (1976) Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Balpha and M2Bbeta. J. Biol. Chem. 251, 5551-5557
  27. Kim, S., Schilke, B., Craig, E. A., and Horwich, A. L. (1998) Folding in vivo of a newly translated yeast cytosolic enzyme is mediated by the SSA class of cytosolic yeast Hsp70 proteins. Proc. Natl. Acad. Sci. USA 95, 12860-12865 https://doi.org/10.1073/pnas.95.22.12860
  28. Krobitsch, S. and Lindquist, S. (2000) Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl. Acad. Sci. USA 97, 1589-1594 https://doi.org/10.1073/pnas.97.4.1589
  29. Lindquist, S. (1986) The heat-shock response. Annu. Rev. Biochem. 55, 1151−1191 https://doi.org/10.1146/annurev.bi.55.070186.005443
  30. Link, A. J., Eng, J., Schieltz, D. M., Carmack, E., Mize, G. J., et al. (1999) Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17, 676-682 https://doi.org/10.1038/10890
  31. Lipowsky, G., Bischoff, F. R., Schwarzmaier, P., Kraft, R., Kostka, S., et al. (2000) Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. EMBO J. 19, 4362-4371 https://doi.org/10.1093/emboj/19.16.4362
  32. Matsumoto, R., Akama, K., Rakwal, R., and Iwahashi, H. (2005) The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae. BMC Genomics 6, 141 https://doi.org/10.1186/1471-2164-6-141
  33. McAlister, L. and Holland, M. J. (1982) Targeted deletion of a yeast enolase structural gene. Identification and isolation of yeast enolase isozymes. J. Biol. Chem. 257, 7181-7188
  34. McAlister, L. and Holland, M. J. (1985) Isolation and characterization of yeast strains carrying mutations in the glyceraldehyde- 3-phosphate dehydrogenase genes. J. Biol. Chem. 260, 15013−15018
  35. Meriin, A. B., Zhang, X., He, X., Newnam, G. P., Chernoff, Y. O., et al. (2002) Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like pro tein Rnq1. J. Cell Biol. 157, 997−1004 https://doi.org/10.1083/jcb.200112104
  36. Nelson, R. J., Heschl, M. F., and Craig, E. A. (1992) Isolation and characterization of extragenic suppressors of mutations in the SSA hsp70 genes of Saccharomyces cerevisiae. Genetics 131, 277−285
  37. Nicolet, C. M. and Craig, E. A. (1989) Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol. Cell. Biol. 9, 3638−3646
  38. Oka, M., Kimata, Y., Mori, K., and Kohno, K. (1997) Saccharomyces cerevisiae KAR2 (BiP) gene expression is induced by loss of cytosolic HSP70/Ssa1p through a heat shock elementmediated pathway. J. Biochem. (Tokyo) 121, 578−584 https://doi.org/10.1093/oxfordjournals.jbchem.a021624
  39. Patton, W. F. (2002) Detection technologies in proteome analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 771, 3−31
  40. Rakwal, R. A., Kubo, A., Yonekura, M., Tamogami, S., Saji, H., et al. (2003) Defense/stress responses elicited in rice seedlings exposed to the gaseous air pollutant sulfur dioxide. Environ. Exp. Bot. 49, 223−235 https://doi.org/10.1016/S0098-8472(02)00072-2
  41. Sasaki, K., Abid, M. R., and Miyazaki, M. (1996) Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae. FEBS Lett. 384, 151−154 https://doi.org/10.1016/0014-5793(96)00310-9
  42. Satyanarayana, C., Schroder-Kohne, S., Craig, E. A., Schu, P. V., and Horst, M. (2000) Cytosolic Hsp70s are involved in the transport of aminopeptidase 1 from the cytoplasm into the vacuole. FEBS Lett. 470, 232−238 https://doi.org/10.1016/S0014-5793(00)01324-7
  43. Schnier, J., Schwelberger, H. G., Smit-McBride, Z., Kang, H. A., and Hershey, J. W. (1991) Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 3105−3114
  44. Shulga, N., James, P., Craig, E. A., and Goldfarb, D. S. (1999) A nuclear export signal prevents Saccharomyces cerevisiae Hsp70 Ssb1p from stimulating nuclear localization signaldirected nuclear transport. J. Biol. Chem. 274, 16501-16507 https://doi.org/10.1074/jbc.274.23.16501
  45. Steinberg, T. H., Agnew, B. J., Gee, K. R., Leung, W. Y., Goodman, T., et al. (2003) Global quantitative phosphoprotein analysis using Multiplexed Proteomics technology. Proteomics 3, 1128−1144 https://doi.org/10.1002/pmic.200300434
  46. Valentini, S. R., Casolari, J. M., Oliveira, C. C., Silver, P. A., and McBride, A. E. (2002) Genetic interactions of yeast eukaryotic translation initiation factor 5A (eIF5A) reveal connections to poly(A)-binding protein and protein kinase C signaling. Genetics 160, 393−405
  47. Washburn, M. P., Wolters, D., and Yates, J. R., 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242−247 https://doi.org/10.1038/85686
  48. Washburn, M. P., Koller, A., Oshiro, G., Ulaszek, R. R., Plouffe, D., et al. (2003) Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 100, 3107−3112 https://doi.org/10.1073/pnas.0634629100
  49. Wegele, H., Haslbeck, M., Reinstein, J., and Buchner, J. (2003) Sti1 is a novel activator of the Ssa proteins. J. Biol. Chem. 278, 25970−25976 https://doi.org/10.1074/jbc.M301548200
  50. Wohl, T., Baur, M., Friedl, A. A., and Lottspeich, F. (1992) Chromosomal localization of the HYP2-gene in Saccharomyces cerevisiae and use of pulsed-field gel electrophoresis for detection of irregular recombination events in gene disruption experiments. Electrophoresis 13, 651−653 https://doi.org/10.1002/elps.11501301136
  51. Wohl, T., Klier, H., Ammer, H., Lottspeich, F., and Magdolen, V. (1993) The HYP2 gene of Saccharomyces cerevisiae is essential for aerobic growth: characterization of different isoforms of the hypusine-containing protein Hyp2p and analysis of gene disruption mutants. Mol. Gen. Genet. 241, 305−311
  52. Ziegelhoffer, T., Lopez-Buesa, P., and Craig, E. A. (1995) The dissociation of ATP from hsp70 of Saccharomyces cerevisiae is stimulated by both Ydj1p and peptide substrates. J. Biol. Chem. 270, 10412−10419 https://doi.org/10.1074/jbc.270.18.10412
  53. Zuk, D. and Jacobson, A. (1998) A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. EMBO J. 17, 2914−2925 https://doi.org/10.1093/emboj/17.10.2914