• Title/Summary/Keyword: n-type GaN

Search Result 382, Processing Time 0.032 seconds

Detection of Streptavidin-Biotin Complexes Using a Highly Sensitive AlGaN/GaN-Based Extended-Gate MISHEMT-Type Biosensor

  • Lee, Hee Ho;Bae, Myunghan;Choi, Byoung-Soo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.320-325
    • /
    • 2016
  • In this paper, we propose an AlGaN/GaN-based extended-gate metal-insulator-semiconductor high electron mobility transistor (MISHEMT)-type biosensor for detecting streptavidin-biotin complexes. We measure the drain current of the fabricated sensor, which varies depending on the antibody-antigen reaction of streptavidin with biotin molecules. To confirm the immobilization of biotin polyethylene glycol (PEG) thiol, we analyze the Au surface of a GaN sample using X-ray photoelectron spectroscopy (XPS). The proposed biosensor shows higher sensitivity than Si-based extended-gate metal oxide semiconductor field effect transistor (MOSFET)-type biosensor. In addition, the proposed AlGaN/GaN-based extended-gate MISHEMT-type biosensor exhibits better long-term stability, compared to the conventional AlGaN/GaN-based MISHEMT-type biosensor.

Novel Activation by Electrochemical Potentiostatic Method

  • Lee, Hak-Hyeong;Lee, Jun-Gi;Jeong, Dong-Ryeol;Gwon, Gwang-U;Kim, Ik-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.29.1-29.1
    • /
    • 2009
  • Fabrication of good quality P-type GaN remained as a challenge for many years which hindered the III-V nitrides from yielding visible light emitting devices. Firstly Amano et al succeeded in obtaining P-type GaN films using Mg doping and post Low Energy Electron Beam Irradiation (LEEBI) treatment. However only few region of the P-GaN was activated by LEEBI treatment. Later Nakamura et al succeeded in producing good quality P-GaN by thermal annealing method in which the as deposited P-GaN samples were annealed in N2 ambient at temperatures above $600^{\circ}C$. The carrier concentration of N type and P-type GaN differs by one order which have a major effect in AlGaN based deep UV-LED fabrication. So increasing the P-type GaN concentration becomes necessary. In this study we have proposed a novel method of activating P-type GaN by electrochemical potentiostatic method. Hydrogen bond in the Mg-H complexes of the P-type GaN is removed by electrochemical reaction using KOH solution as an electrolyte solution. Full structure LED sample grown by MOCVD serves as anode and platinum electrode serves as cathode. Experiments are performed by varying KOH concentration, process time and applied voltage. Secondary Ion Mass Spectroscopy (SIMS) analysis is performed to determine the hydrogen concentration in the P-GaN sample activated by annealing and electrochemical method. Results suggest that the hydrogen concentration is lesser in P-GaN sample activated by electrochemical method than conventional annealing method. The output power of the LED is also enhanced for full structure samples with electrochemical activated P-GaN. Thus we propose an efficient method for P-GaN activation by electrochemical reaction. 30% improvement in light output is obtained by electrochemical activation method.

  • PDF

Improvement of Photoelectrochemical Properties through Activation Process of p-type GaN (p-type GaN의 Activation을 통한 광전기화학적 특성 향상)

  • Bang, Seung Wan;Kim, Haseong;Bae, Hyojung;Ju, Jin-Woo;Kang, Sung-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.59-63
    • /
    • 2017
  • The n-type GaN semiconductor has excellent properties as a photoelectrode, but it has disadvantage that its reliability is deteriorated due to the photocorrosion because the oxygen reaction occurs on the surface. For this reason, there are fundamental attempts to avoid photocorrosion reaction of GaN surfaces by using the p-type GaN as a photoelectrode where hydrogen generation reaction occurs on the surface. However, p-type GaN has a problem of low efficiency because of its high resistivity and low hole mobility. In this study, we try to improve the photocurrent efficiency by activation process for the p-type GaN. The p-type GaN was annealed for 1 min. at $500^{\circ}C$ in $N_2$ atmosphere. Hall effect measurement system was used for the electrical properties and potentiostat (PARSTAT4000) was used to measure the photoelectrochemical (PEC) characteristics. Consequently, the photocurrent density was improved more than 1.5 times by improving the activation process for the p-type GaN. Also, its reliability was maintained for 3 hours.

Pt/AlGaN Schottky-Type UV Photodetector with 310nm Cutoff Wavelength

  • Kim, Bo-Kyun;Kim, Jung-Kyu;Park, Sung-Jong;Lee, Heon-Bok;Cho, Hyun-Ick;Lee, Young-Hyun;Hahn, Yoon-Bong;Lee, Jung-Hee;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.66-71
    • /
    • 2003
  • Pt/AlGaN Schottky-type UV photodetectors were designed and fabricated. A low-temperature AlGaN interlayer buffer was grown between the AlGaN and GaN film in the diode structure epitaxy to obtain crack-free AlGaN active layers. A comparison was then made of the structural, electrical, and optical characteristics of two different diodes: one with an AlGaN($0.5\;{\mu}m$)/n+-GaN(2 nm) structure (type 1) and the other with an AlGaN($0.5\;{\mu}m$)/AlGaN interlayer($150\;{\AA}$)/n+-GaN($3\;{\mu}m$) structure(type 2). A crack-free AlGaN film was obtained by the insertion of a low-temperature AlGaN interlayer with an aluminum mole fraction of 26% into the $Al_xGa_{1-x}N$ layer. The fabricated Pt/$Al_{0.33}Ga_{0.67}N$ photodetector had a leakage current of 1 nA for the type 1 diode and $0.1\;{\mu}A$ for the type 2 diode at a reverse bias of -5 V. For the photoresponse measurement, the type 2 diode exhibited a cut-off wavelength of 300 nm, prominent responsivity of 0.15 A/W at 280 nm, and UV-visible extinction ratio of $1.5{\times}10^4$. Accordingly, the Pt/$Al_{0.33}Ga_{0.67}N$ Schottky-type ultraviolet photodetector with an AlGaN interlayer exhibited superior electrical and optical characteristics and improved UV detecting properties.

Analysis of Current-Voltage characteristics of AlGaN/GaN HEMTs with a Stair-Type Gate structure (계단형 게이트 구조를 이용한 AlGN/GaN HEMT의 전류-전압특성 분석)

  • Kim, Dong-Ho;Jung, Kang-Min;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • We present simulation results on DC characteristics of AlGaN/GaN HEMT having stair-type gate electrodes, in comparison with those of the conventional single gate AlGaN/GaN HEMTs and field-plate enhanced AlGaN/GaN HEMTs. In order to reduce the internal electric field near the gate electrode of conventional HEMT and thereby to increase their DC characteristics, we applied three-layered stacking electrode schemes to the standard AlGaN/GaN HEMT structure. As a result, we found that the internal electric field was decreased by 70% at the same drain bias condition and the transconductance (gm) was improved by 11.4% for the proposed stair-type gate AlGaN/GaN HEMT, compared with those of the conventional single gate and field-plate enhanced AlGaN/GaN HEMTs.

Influence of Ion Isolation on the Resistivity of Different Types of GaN

  • Johra, Fatima Tuz;Jung, Woo-Gwang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.237.1-237.1
    • /
    • 2011
  • Resistivity of GaN has been investigated under the influence of ion implantation. n-type, p-type and also undoped GaN has been used here. A ring shape pattern of Au was fabricated on GaN film by the photolithography technique. H, He and Ar were used for implantation. The ion implantation energy, fluence and post-implant annealing temperature varied in this research. Because of the making barrier in some selected area using ions, the resistivity changed in all the samples with the change of both fluence and energy. At room temperature, the resistivity of n-type GaN has been increased from $1.9{\times}10-2$ to $17.7{\times}10-2\;{\Omega}-cm$. This is high for He ion. But undoped and p-type GaN showed some anomalous character.

  • PDF

Design and Analysis of Gate-recessed AlGaN/GaN Fin-type Field-Effect Transistor

  • Jang, Young In;Seo, Jae Hwa;Yoon, Young Jun;Eun, Hye Rim;Kwon, Ra Hee;Lee, Jung-Hee;Kwon, Hyuck-In;Kang, In Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.554-562
    • /
    • 2015
  • This paper presents the design and analysis of gate-recessed AlGaN/GaN Fin-type Field-Effect Transistor (FinFET). The three-dimensional (3-D) technology computer-aided design (TCAD) simulations were performed to analyze the direct-current (DC) and radio-frequency (RF) characteristics for AlGaN/GaN FinFETs. The fin width ($W_{fin}$) and the height of GaN layer ($H_{GaN}$) are the design parameters used to improve the electrical performances of gate-recessed AlGaN/GaN FinFET.

Gate Field Alleviation by graded gate-doping in Normally-off p-GaN/AlGaN/GaN Hetrojunction FETs (상시불통형 p-GaN/AlGaN/GaN 이종접합 트랜지스터의 게이트막 농도 계조화 효과)

  • Cho, Seong-In;Kim, Hyungtak
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1167-1171
    • /
    • 2020
  • In this work, we proposed a graded gate-doping structure to alleviate an electric field in p-GaN gate layer in order to improve the reliability of normally-off GaN power devices. In a TCAD simulation by Silvaco Atlas, a distribution of the graded p-type doping concentration was optimized to have a threshold voltage and an output current characteristics as same as the reference device with a uniform p-type gate doping. The reduction of an maximum electric field in p-GaN gate layer was observed and it suggests that the gate reliability of p-GaN gate HFETs can be improved.

Preparation of Zn-Doped GaN Film by HVPE Method (HVPE법에 의한 Zn-Doped GaN 박막 제조)

  • Kim, Hyang Sook;Hwang, Jin Soo;Chong, Paul Joe
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.3
    • /
    • pp.167-172
    • /
    • 1996
  • For the preparation of single-crystalline GaN film, heteroepitaxial growth on a sapphire substrate was carried out by halide vapor phase epitaxy(HVPE) method. The resulting GaN films showed n-type conductivity. The insulator type GaN film was made by doping with Zn(acceptor dopant), which showed emission peaks around 2.64 and 2.43 eV. The result of this study indicates that GaN can be obtained in an epitaxial structure of MIS(metal-insulator-semiconductor) junction. The observed data are regarded as fundamental in developing GaN epitaxial films for light emitting devices of hetero-structure type.

  • PDF

Control of Bowing in Free-standing GaN Substrate by Using Selective Etching of N-polar Face (N-polar면의 선택적 에칭 방법을 통한 Free-standing GaN 기판의 Bowing 제어)

  • Gim, Jinwon;Son, Hoki;Lim, Tea-Young;Lee, Mijai;Kim, Jin-Ho;Lee, Young Jin;Jeon, Dae-Woo;Hwang, Jonghee;Lee, Hae-Yong;Yoon, Dae-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.30-34
    • /
    • 2016
  • In this paper, we report that selective etching on N-polar face by EC (electro-chemical)-etching effect on the reduction of bowing and strain of FS (free-standing)-GaN substrates. We applied the EC-etching to concave and convex type of FS-GaN substrates. After the EC-etching for FS-GaN, nano porous structure was formed on N-polar face of concave and convex type of FS-GaN. Consequently, the bowing in the convex type of FS-GaN substrate was decreased but the bowing in the concave type of FS-GaN substrate was increased. Furthermore, the FWHM (full width at half maximum) of (1 0 2) reflection for the convex type of FS-GaN was significantly decreased from 601 to 259 arcsec. In the case, we confirmed that the EC-etching method was very effective to reduce the bowing in the convex type of FS-GaN and the compressive stress in N-polar face of convex type of FS-GaN was fully released by Raman measurement.