DOI QR코드

DOI QR Code

Detection of Streptavidin-Biotin Complexes Using a Highly Sensitive AlGaN/GaN-Based Extended-Gate MISHEMT-Type Biosensor

  • Lee, Hee Ho (School of Electronics Engineering, Kyungpook National Unversity) ;
  • Bae, Myunghan (School of Electronics Engineering, Kyungpook National Unversity) ;
  • Choi, Byoung-Soo (School of Electronics Engineering, Kyungpook National Unversity) ;
  • Shin, Jang-Kyoo (School of Electronics Engineering, Kyungpook National Unversity)
  • Received : 2016.09.07
  • Accepted : 2016.09.30
  • Published : 2016.09.30

Abstract

In this paper, we propose an AlGaN/GaN-based extended-gate metal-insulator-semiconductor high electron mobility transistor (MISHEMT)-type biosensor for detecting streptavidin-biotin complexes. We measure the drain current of the fabricated sensor, which varies depending on the antibody-antigen reaction of streptavidin with biotin molecules. To confirm the immobilization of biotin polyethylene glycol (PEG) thiol, we analyze the Au surface of a GaN sample using X-ray photoelectron spectroscopy (XPS). The proposed biosensor shows higher sensitivity than Si-based extended-gate metal oxide semiconductor field effect transistor (MOSFET)-type biosensor. In addition, the proposed AlGaN/GaN-based extended-gate MISHEMT-type biosensor exhibits better long-term stability, compared to the conventional AlGaN/GaN-based MISHEMT-type biosensor.

Keywords

References

  1. K. E. Nelson, L. S. Gamble, L. S. Jung, and M. S. Boeckl, "Surface characterization of mixed self-assembled monolayers designed for streptavidin immobilization", Langmuir, Vol. 17, pp. 2807-2816, 2001. https://doi.org/10.1021/la001111e
  2. B. K. Sohn, C. S. Kim, "A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen", Sens. Actuator B-Chem., Vol. 34, pp. 435-440, 1996. https://doi.org/10.1016/S0925-4005(97)80017-2
  3. S. V. Dzyadevich, Y. I. Korpan, V. N. Arkhipova, M. Y. Alesina, C. Martelet, A. V. El'Skaya, A. P. Soldatkin, "Application of enzyme field-effect transistors for determination of glucose concentrations in blood serum", Biosens. Bioelectron., Vol. 14, pp. 283-287, 1999. https://doi.org/10.1016/S0956-5663(99)00007-X
  4. T. P. Chow and R. Tyagi, "Wide Bandgap Compound Semiconductors for Superior High-Voltage Unipolar Power Devices", IEEE Trans. Electron Devices, Vol. 41, pp. 1481- 1483, 1994. https://doi.org/10.1109/16.297751
  5. B. S. Kang, H. T. Wang, F. Ren, and S. J. Pearton, "Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors", J. Appl. Phys., Vol. 104, pp. 031101, 2008. https://doi.org/10.1063/1.2959429
  6. G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, and M. Eickhoff, "AlxGa1-xN-A New Material System for Biosensors", Adv. Funct. Mater., Vol. 13, pp. 841-846, 2003. https://doi.org/10.1002/adfm.200304397
  7. J. Choi, H. H. Lee, J. Ahn, S.-H. Seo, and J.-K. Shin, "Differential- Mode Biosensor Using Dual Extended-Gate Metal-Oxide-Semiconductor Field-Effect Transistors", Jpn. J. Appl. Phys., Vol. 51, pp. 06FG05 2012. https://doi.org/10.7567/JJAP.51.06FG05
  8. D.-S. Kim, J.-E. Park, J.-K. Shin, P. K. Kim, G. Lim, and S. Shoji, "An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes", Sens. Actuators B, Vol. 117, pp. 488-494, 2006. https://doi.org/10.1016/j.snb.2006.01.018
  9. J.-K. Shin, D.-S. Kim, H.-J. Park, and G. Lim, "Detection of DNA and Protein Molecules Using an FET-Type Biosensor with Gold as a Gate Metal", Electroanalysis, Vol. 16, pp. 1912-1918, 2004. https://doi.org/10.1002/elan.200403080
  10. D. Y. Petrovykh, H. Kimura-Suda, L. J. Whitman, M. J. Tarlov, "Quantitative Analysis and Characterization of DNA Immobilized on Gold", J. Am. Chem. Soc., Vol. 125, pp. 5219-5226, 2003. https://doi.org/10.1021/ja029450c
  11. M. Mrksich and G. M. Whitesides, "Patterning self-assembled monolayers using microcontact printing: A new technology for biosensors?", Trends Biotechnol., Vol. 13, pp. 228-235, 1995.
  12. Y. Wang and W. Lu, "AlGaN/GaN FET for DNA hybridization detection", Phys. Status Solidi A, Vol. 208, pp. 1623- 1625, 2011. https://doi.org/10.1002/pssa.201001090
  13. B. S. Kang, F. Ren, L. Wang, C. Lofton, W. W. Tan, A. Dabiran, A. Oinsky, and P. P. Chow, "Electrical detection of immobilized proteins with ungated AlGaN⁄ GaN high-electron- mobility Transistors", Appl. Phys. Lett., Vol. 87, pp. 023508, 2005. https://doi.org/10.1063/1.1994951
  14. I. Kwon, H.-H. Lee, J. Choi, J.-K. Shin, S.-H. Seo, S.-W. Choi, and H.-S. Chun, "Extended-Gate Metal Oxide Semiconductor Field Effect Transistor-Based Biosensor for Detection of Deoxynivalenol", Jpn. J. Appl. Phys., Vol. 50, pp. 06GL08, 2011. https://doi.org/10.7567/JJAP.50.06GL08
  15. B. S. Kang, J. J. Chen, F. Ren, S. J. Pearton, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum, "Prostate specific antigen detection using AlGaN/GaN high electron mobility transistors", Appl. Phys. Lett., Vol. 89, pp. 122102, 2006. https://doi.org/10.1063/1.2354491